Search
next up previous
Next: Jean-Christophe Aval - To Up: Algebraic Combinatorics, Group Representations Previous: Algebraic Combinatorics, Group Representations

Ed Allen - Bitableaux bases for some Garsia-Haiman modules and other related modules



ED ALLEN, Wake Forest University, Reynolda Station, Winston-Salem, North Carolina  27109, USA
Bitableaux bases for some Garsia-Haiman modules and other related modules


Let ${\cal A}$ be the alphabet

\begin{displaymath}{\cal A}=\{\dots, (0,3), (0,2), (0,1), (0,0), (1,0),
(2,0), (3,0), \dots \}.
\end{displaymath}

Let C[X,Y,Z,W] be the polynomial ring in the variables $X=\{x_1, x_2, \dots, x_n\}$, $Y=\{y_1, y_2, \dots, y_n\}$, $Z=\{z_1, z_2, \dots, z_n\}$ and $W=\{w_1, w_2, \dots, w_n\}$. Given a subset $S=\{(a_1,b_1), (a_2,b_2), \dots, (a_n,b_n)\}$ of the alphabet ${\cal A}$, we define MS to be the $n \times n$matrix

\begin{displaymath}M_S = (x_i^{a_j} y_i^{b_j})_{1\le i,j\le n}
\end{displaymath}

and $\Delta_S(X,Y)$ to be the determinant of MS. Let $\partial_{x_i}$ denote the partial differential operator with respect to xi. With $P(X,Y)\in C[X,Y]$, we will set $P(\partial_x,\partial_Y) = P(\partial_{x_1},
\partial_{x_2},\dots,\partial_{x_n},\partial_{y_1},
\partial_{y_2},\dots, \partial_{y_n})$. Setting ${\cal I}_S$ to be the ideal

\begin{displaymath}{\cal I}_S=\{P(X,Y)\in C[X,Y]:P(\partial_X,\partial_Y)\Delta_S(X,Y)
=0\},
\end{displaymath}

we define RS(X,Y) to be the polynomial quotient ring

\begin{displaymath}R_S(X,Y)= C[X,Y]/{\cal I}_S.
\end{displaymath}

The rings RS(X,Y) are called the Garsia-Haiman modules.

The action of $\sigma\in S_n$ on $P(X,Y,Z,W) \in C[X,Y,Z,W]$ is defined by setting
\begin{align*}\sigma P(x_1, x_2, \dots,
&{}x_n, y_1, \dots, y_n ,
z_1, \dots, z_...
...\sigma_1}, \dots,
z_{\sigma_n}, w_{\sigma_1}, \dots, w_{\sigma_n}).
\end{align*}
Set
\begin{gather*}R^+[X,Y,Z,W]=\{P(X,Y,Z,W)\in C[X,Y,Z,W]:\sigma P=P\ \forall
\sigm...
...al{y}, \partial{z}, \partial{w})
\Delta_S(X,Y)\Delta_T(Z,W) = 0\}
\end{gather*}
and

RS+ (X,Y,Z,W)= C[X,Y,Z,W]/IS,T.

Analogously, with $\textrm{sgn}(\sigma)$ denoting the sign of the permutation $\sigma$, let
\begin{gather*}R^-(X,Y,Z,W)=\{P(X,Y,Z,W)\in C[X,Y,Z,W]:\sigma
P = \textrm{sgn}(...
...tial{y},\partial{z},\partial{w})
\Delta_S(X,Y)\Delta_T(Z,W) = 0\}
\end{gather*}
and

R-S,T (X,Y,Z,W)= C[X,Y,Z,W]/JS,T.

We construct bases for RS(X,Y), R+S,T(X,Y,Z,W) and R-S,T(X,Y,Z,W) (for certain generalclasses of S and T that are called dense) that are indexed by pairs of standard tableaux and sequences $\psi_S$ and $\psi_T$.


next up previous
Next: Jean-Christophe Aval - To Up: Algebraic Combinatorics, Group Representations Previous: Algebraic Combinatorics, Group Representations