


Next: Jean-Christophe Aval - To Up: Algebraic Combinatorics, Group Representations Previous: Algebraic Combinatorics, Group Representations
Ed Allen - Bitableaux bases for some Garsia-Haiman modules and other related modules
ED ALLEN, Wake Forest University, Reynolda Station, Winston-Salem, North Carolina 27109, USA |
Bitableaux bases for some Garsia-Haiman modules and other related modules |
Let be the alphabet

Let C[X,Y,Z,W] be the polynomial ring in the variables








and


![$P(X,Y)\in C[X,Y]$](img35.gif)


![\begin{displaymath}{\cal I}_S=\{P(X,Y)\in C[X,Y]:P(\partial_X,\partial_Y)\Delta_S(X,Y)
=0\},
\end{displaymath}](img38.gif)
we define RS(X,Y) to be the polynomial quotient ring
![\begin{displaymath}R_S(X,Y)= C[X,Y]/{\cal I}_S.
\end{displaymath}](img39.gif)
The rings RS(X,Y) are called the Garsia-Haiman modules.
The action of
on
is
defined by setting
Set
and
Analogously, with


![\begin{gather*}R^-(X,Y,Z,W)=\{P(X,Y,Z,W)\in C[X,Y,Z,W]:\sigma
P = \textrm{sgn}(...
...tial{y},\partial{z},\partial{w})
\Delta_S(X,Y)\Delta_T(Z,W) = 0\}
\end{gather*}](img46.gif)
and
We construct bases for
RS(X,Y),
R+S,T(X,Y,Z,W) and
R-S,T(X,Y,Z,W) (for certain generalclasses of S and T that
are called dense) that are indexed by pairs of standard tableaux
and sequences and
.



Next: Jean-Christophe Aval - To Up: Algebraic Combinatorics, Group Representations Previous: Algebraic Combinatorics, Group Representations