Search
next up previous
Next: Mykola Hladiy - Generalized Up: Contributed Papers / Communications Previous: Boris Dekster - Each

Paul Gauthier - The Cauchy and Green theorems pour connexite arbitraire



PAUL GAUTHIER, Universit/'e de Montréal, Montréal, Québec  H3C 3J7
The Cauchy and Green theorems pour connexite arbitraire


The fundamental theorem of complex analysis is the Cauchy theorem which states that if D is a bounded domain of the complex plane with rectifiable boundary, consisting of finitely many disjoint Jordan curves, then

\begin{displaymath}\int _{\partial D }f(z)\,dz = 0,
\end{displaymath}

for each function f holomorphic in D and continuous on its boundary. We show that the word `finitely' is superfluous. Nous donnons aussi une généralisation analogue du théorème de Green.