# Characterizing a Symmedian 

Michel Bataille<br>Dedicated to the memory of Ross Honsberger

In 1873, Émile Lemoine introduced new cevians of the triangle, the symmedians, and presented some properties of their point of concurrency, a centre of the triangle now called the Lemoine point or symmedian point ([1]). Since then, these particular lines and point have been discussed in many geometry books and articles, as exemplified by the beautiful chapter 7 of Ross Honsberger's famous book [2] (one can also see [3], [4] or [5]). In this note, we examine several characterizations of the symmedian attached to a vertex of the triangle. We give unified proofs of some of these characterizations which are well-known and offer a couple of much less known ones.

## Symmedians and antiparallels

First, let us recall the definition of a symmedian. Let $m$ be the median through the vertex $A$ of triangle $A B C$. The symmedian $s$ through $A$ is the reflection of the line $m$ in the internal bisector $\ell$ of $\angle B A C$.

The median $m$ and the symmedian $s$ share a "bisection" property: clearly, $m$ bisects any segment $B_{0} C_{0}$ with $B_{0}$ on $A B, C_{0}$ on $A C$ and $B_{0} C_{0}$ parallel to $B C$, and therefore $s$ bisects $B_{1} C_{1}$ where $B_{1}, C_{1}$ are the reflections in $\ell$ of $B_{0}, C_{0}$, respectively (Figure 1: the midpoints $M_{0}$ and $M_{1}$ of $B_{0} C_{0}$ and $B_{1} C_{1}$ are symmetric in $\ell$ ).


Figure 1
The segment $B_{1} C_{1}$ is said to be antiparallel to $B C$ and the line $\delta_{1}=B_{1} C_{1}$, the image of $\delta_{0}=B_{0} C_{0}$ in $\ell$, is called an antiparallel (line) to $B C$. With this terminology, the median $m$ bisects any segment parallel to $B C$ and the symmedian $s$ bisects any segment antiparallel to $B C$. Since a reflection is involutive, we may even conclude:
a line through $A$ is the symmedian $s$ if and only if it bisects some segment antiparallel to $B C$.

To emphasize this characterization, let us make two remarks. First, the antiparallels to $B C$ can be recognized without involving $\ell$ explicitly. For example, they intersect $A C, A B$ in $B_{1}, C_{1}$ such that $\triangle A B_{1} C_{1}$ is inversely similar to $\triangle A B C$. More hidden is the following: the lines antiparallel to $B C$ are exactly the perpendiculars to $O A$ where $O$ is the circumcentre of $\triangle A B C$. This easily follows from observing that a line $\delta_{1}$ intersecting $A B$ in $C_{1}$ and $A C$ in $B_{1}$ is parallel to the tangent $t$ at $A$ to the circumcircle $\Gamma$ of $\triangle A B C$ if and only if $\angle\left(B_{1} A, B_{1} C_{1}\right)=\angle(B C, B A)$ (note that $\left.\angle(B C, B A)=\angle(A C, t)=\angle\left(A B_{1}, t\right)\right)$ (Figure 2).


Figure 2
Our second remark is historical: in his original paper [1], Lemoine defined the symmedians as the lines through each vertex bisecting any segment antiparallel to the opposite side, going so far as to call them les médianes antiparallèles. Perhaps the term antimédianes would have been a more appropriate choice!

## Symmedians and polarity

A very well-known and often-used characterization of the symmedian $s$ is the following one:
$s$ is the line through $A$ and the pole of $B C$ with respect to the circum-
circle $\Gamma$ of $\triangle A B C$.
In the proof (and coming proofs), we discard the easy cases when $\angle B A C=90^{\circ}$ and when $A B=A C$ (in both cases, $s$ is the altitude from $A$ ).

Recall that the pole $P$ of $B C$ with respect to $\Gamma$ is the point of intersection of the tangents to $\Gamma$ at $B$ and $C$. Let $B C$ meet the tangent $t$ to $\Gamma$ at $A$ in $Q$ and let $A B$ and $A C$ meet the tangent $t^{\prime}$ to $\Gamma$ at the point $A^{\prime}$ diametrically opposite to $A$ in $B^{\prime}$ and $C^{\prime}$, respectively. Let the line $A P$ intersect $B C$ at $L$ and $B^{\prime} C^{\prime}$ at $M$ (Figure $3)$. Since $Q$ is on the polar $B C$ of $P$ and on the polar $t$ of $A$, the line $A P$ is the polar of $Q$. It follows that $Q$ and $L$ divide $B C$ harmonically.

Under the central perspectivity with centre $A$, the points $C, L, B$, and $Q$ are transformed into $C^{\prime}, M, B^{\prime}$, and the point at infinity on $t^{\prime}$, respectively, hence $M$ is the midpoint of $B^{\prime} C^{\prime}$. Since $B^{\prime} C^{\prime}$ is antiparallel to $B C, A P$ is the symmedian $s$.

In passing and for later use, note that the proof above readily yields another characterization associated with the polarity with respect to $\Gamma$ :
$s$ is the polar of the intersection of $B C$ with the tangent to $\Gamma$ at $A$.


Figure 3

## Symmedians and Grebe's construction

Another use of antiparallels leads to a proof of the following characterization of $s$ :
Let squares $A B D E$ and $A C F G$ be drawn externally to $\triangle A B C$ and let $R$ be the point of intersection of $D E$ and $F G$. Then the line $A R$ is the symmedian $s$.

This property provides a construction of the symmedian point known as Grebe's construction, from the German mathematician Ernst Grebe.

Let the lines $A B$ and $A C$ intersect $R G$ and $R E$ in $B^{\prime}$ and $C^{\prime}$, respectively (Figure 4). Clearly, $A B^{\prime} R C^{\prime}$ is a parallelogram so that $R A$ bisects the segment $B^{\prime} C^{\prime}$. Therefore, we just have to prove that $B^{\prime} C^{\prime}$ is antiparallel to $B C$.

Let $\rho$ denote the right-angle rotation with centre $A$ transforming $C$ into $G$ (note that $\rho(E)=B)$. Let $C_{1}=\rho\left(C^{\prime}\right)$ and $B_{1}=\rho^{-1}\left(B^{\prime}\right)$. Then, the line $A B_{1}$ is perpendicular to $A B$, hence parallel to $B C_{1}$ (note that $\angle A B C_{1}=\angle A E C^{\prime}=90^{\circ}$ since $\rho(E)=B$ and $\left.\rho\left(C^{\prime}\right)=C_{1}\right)$. It follows that the line through the midpoints of $A B$ and $A C_{1}$ is parallel to $A B_{1}$, hence intersects $B_{1} C_{1}$ at its midpoint and, being perpendicular to $A B$, is the perpendicular bisector of $A B$. In a similar way, the line through the midpoints of $A C$ and $A B_{1}$ is the perpendicular bisector of $A C$ and passes through the midpoint of $B_{1} C_{1}$. As a result, this midpoint is the circumcentre $O$ of $A B C$.
Now, the vector $2 \overrightarrow{A O}=\overrightarrow{A B_{1}}+\overrightarrow{A C_{1}}$ is the image under a right-angle rotation of $-\overrightarrow{A B^{\prime}}+\overrightarrow{A C^{\prime}}=\overrightarrow{B^{\prime} C^{\prime}}$, hence $B^{\prime} C^{\prime}$ is perpendicular to $O A$, and as such, is
antiparallel to $B C$.


Figure 4
As a corollary, remarking that $\angle A G R=\angle A E R=90^{\circ}$ so that the common midpoint of $A R$ and $B^{\prime} C^{\prime}$ is equidistant from $A, R, G, E$, we obtain a characterization mentioned in [5] with a different proof:
$s$ is the line through $A$ and the circumcentre of $\triangle A G E$.

## Symmedians as tangents

The next characterization is derived from an old problem proposed in 1928 in [6] and, to the best of my knowledge, does not appear in recent books or articles:
$s$ is the tangent at $A$ to the circumcircle of $\Delta C A B^{\prime}$ where $B^{\prime}$ is the reflection of $B$ in $A$.

The proof given here uses the same method as above and is completely different from the 1928 solution by G. Excoffier.


Figure 5

We introduce the symmetric $C^{\prime}$ of $C$ about $A$, obtaining the parallelogram $C B C^{\prime} B^{\prime}$. Let $B_{1}$ and $C_{1}$ be the reflections of $B^{\prime}$ and $C^{\prime}$ in the internal bisector of $\angle B A C$, so that the segment $B_{1} C_{1}$ is antiparallel to $B C$. Let $\gamma$ denote the circle through $C, A, B^{\prime}$ and let the tangent to $\gamma$ at $A$ intersect $B_{1} C_{1}$ at $M$ (Figure 5). It suffices to show that $M B_{1}=M C_{1}$.

We shall exploit the numerous equalities of angles of the figure: first

$$
\angle A B_{1} C_{1}=\angle C B A \quad \text { and } \quad \angle A C_{1} B_{1}=\angle B C A=\angle B^{\prime} C^{\prime} C
$$

(since $B_{1} C_{1}$ is antiparallel to $B C$ and $B^{\prime} C^{\prime}$ is parallel to $B C$ ); second

$$
\angle\left(C B^{\prime}, C A\right)=\angle\left(A C_{1}, A M\right) \quad \text { and } \quad \angle\left(B^{\prime} A, B^{\prime} C\right)=\angle\left(A M, A B_{1}\right)
$$

(since $A M$ is tangent to $\gamma$ ). We immediately deduce that the triangles $A M C_{1}$ and $C B^{\prime} C^{\prime}$ are similar and so are triangles $A M B_{1}$ and $B^{\prime} C B$. In consequence, we have

$$
M C_{1}=A M \cdot \frac{B^{\prime} C^{\prime}}{C B^{\prime}} \quad \text { and } \quad M B_{1}=A M \cdot \frac{C B}{B^{\prime} C}
$$

and the equality $M B_{1}=M C_{1}$ follows from $B C=B^{\prime} C^{\prime}$.

## Symmedians and special circles through $O$

Our last characterization, which seems to be new, involves two particular circles passing through the circumcentre $O$ of $\triangle A B C$ :
$s$ is the line through the vertex $A$ and the point of intersection other than $O$ of the circumcircle of $\triangle B O C$ and the circle with diameter $A O$.

The proof, unlike the previous ones, leaves aside the antiparallels. Again we introduce the circumcircle $\Gamma$ of $\triangle A B C$ and recall that its tangent $t$ at $A$ intersects $B C$ at the pole $Q$ of the symmedian $s$.


Figure 6

Let the circles $\gamma_{1}$ through $B, O$ and $C$ and $\gamma_{2}$ with diameter $A O$ intersect at $O$ and $O^{\prime}$ (Figure 6) and let $\mathbf{I}$ denote the inversion in the circle $\Gamma$. Then, $\mathbf{I}\left(\gamma_{1}\right)$ is the line $B C$ and $\mathbf{I}\left(\gamma_{2}\right)$ is the tangent $t$ so that $\mathbf{I}\left(O^{\prime}\right)$ is the point $Q$ of intersection of $t$ and $B C$. Since in addition $A O^{\prime}$ is perpendicular to $O O^{\prime}$, we conclude that $A O^{\prime}$ is the polar of $Q$ with respect to $\Gamma$ and the proof is complete.

## References

[1] E. Lemoine, Note sur un point remarquable du plan d'un triangle, Nouv. Ann. de Mathématiques, tome 12, 1873, p. 364-6.
[2] R. Honsberger, Episodes in Nineteenth and Twentieth Century Euclidean Geometry, MAA, 1995.
[3] N. Altshiller-Court, College Geometry, Dover, 1980, p. 247-252.
[4] Y. et R. Sortais, La Géométrie du triangle, Hermann, 1987, p. 152-160.
[5] S. Luo and C. Pohoata, Let's Talk About Symmedians!, Mathematical Reflections, 4, 2013.
[6] E. Mussel/G. Excoffier, Problème 10866, Journal de mathématiques élémentaires, Vuibert, 1928-9, No 1, p. 14.
$\cdot \cdot \cdot$

Michel Bataille
Rouen
France


