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In 1873, Émile Lemoine introduced new cevians of the triangle, the symmedians,
and presented some properties of their point of concurrency, a centre of the triangle
now called the Lemoine point or symmedian point ([1]). Since then, these partic-
ular lines and point have been discussed in many geometry books and articles, as
exemplified by the beautiful chapter 7 of Ross Honsberger’s famous book [2] (one
can also see [3], [4] or [5]). In this note, we examine several characterizations
of the symmedian attached to a vertex of the triangle. We give unified proofs of
some of these characterizations which are well-known and offer a couple of much
less known ones.

Symmedians and antiparallels

First, let us recall the definition of a symmedian. Let m be the median through
the vertex A of triangle ABC. The symmedian s through A is the reflection of
the line m in the internal bisector ` of ∠BAC.

The median m and the symmedian s share a “bisection” property: clearly, m
bisects any segment B0C0 with B0 on AB, C0 on AC and B0C0 parallel to BC, and
therefore s bisects B1C1 where B1, C1 are the reflections in ` of B0, C0, respectively
(Figure 1: the midpoints M0 and M1 of B0C0 and B1C1 are symmetric in `).

Figure 1

The segment B1C1 is said to be antiparallel to BC and the line δ1 = B1C1,
the image of δ0 = B0C0 in `, is called an antiparallel (line) to BC. With this
terminology, the median m bisects any segment parallel to BC and the symmedian
s bisects any segment antiparallel to BC. Since a reflection is involutive, we may
even conclude:

a line through A is the symmedian s if and only if it bisects some
segment antiparallel to BC.
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To emphasize this characterization, let us make two remarks. First, the antipar-
allels to BC can be recognized without involving ` explicitly. For example, they
intersect AC,AB in B1, C1 such that ∆AB1C1 is inversely similar to ∆ABC. More
hidden is the following: the lines antiparallel to BC are exactly the perpendiculars
to OA where O is the circumcentre of ∆ABC. This easily follows from observing
that a line δ1 intersecting AB in C1 and AC in B1 is parallel to the tangent t at A
to the circumcircle Γ of ∆ABC if and only if ∠(B1A,B1C1) = ∠(BC,BA) (note
that ∠(BC,BA) = ∠(AC, t) = ∠(AB1, t)) (Figure 2).

Figure 2

Our second remark is historical: in his original paper [1], Lemoine defined the
symmedians as the lines through each vertex bisecting any segment antiparallel to
the opposite side, going so far as to call them les médianes antiparallèles. Perhaps
the term antimédianes would have been a more appropriate choice!

Symmedians and polarity

A very well-known and often-used characterization of the symmedian s is the
following one:

s is the line through A and the pole of BC with respect to the circum-
circle Γ of ∆ABC.

In the proof (and coming proofs), we discard the easy cases when ∠BAC = 90◦

and when AB = AC (in both cases, s is the altitude from A).

Recall that the pole P of BC with respect to Γ is the point of intersection of the
tangents to Γ at B and C. Let BC meet the tangent t to Γ at A in Q and let AB
and AC meet the tangent t′ to Γ at the point A′ diametrically opposite to A in B′

and C ′, respectively. Let the line AP intersect BC at L and B′C ′ at M (Figure
3). Since Q is on the polar BC of P and on the polar t of A, the line AP is the
polar of Q. It follows that Q and L divide BC harmonically.

Under the central perspectivity with centre A, the points C,L,B, and Q are trans-
formed into C ′,M,B′, and the point at infinity on t′, respectively, hence M is the
midpoint of B′C ′. Since B′C ′ is antiparallel to BC, AP is the symmedian s.
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In passing and for later use, note that the proof above readily yields another
characterization associated with the polarity with respect to Γ:

s is the polar of the intersection of BC with the tangent to Γ at A.

Figure 3

Symmedians and Grebe’s construction

Another use of antiparallels leads to a proof of the following characterization of s:

Let squares ABDE and ACFG be drawn externally to ∆ABC and let
R be the point of intersection of DE and FG. Then the line AR is the
symmedian s.

This property provides a construction of the symmedian point known as Grebe’s
construction, from the German mathematician Ernst Grebe.

Let the lines AB and AC intersect RG and RE in B′ and C ′, respectively (Figure
4). Clearly, AB′RC ′ is a parallelogram so that RA bisects the segment B′C ′.
Therefore, we just have to prove that B′C ′ is antiparallel to BC.

Let ρ denote the right-angle rotation with centre A transforming C into G (note
that ρ(E) = B). Let C1 = ρ(C ′) and B1 = ρ−1(B′). Then, the line AB1 is
perpendicular to AB, hence parallel to BC1 (note that ∠ABC1 = ∠AEC ′ = 90◦

since ρ(E) = B and ρ(C ′) = C1). It follows that the line through the midpoints
of AB and AC1 is parallel to AB1, hence intersects B1C1 at its midpoint and,
being perpendicular to AB, is the perpendicular bisector of AB. In a similar way,
the line through the midpoints of AC and AB1 is the perpendicular bisector of
AC and passes through the midpoint of B1C1. As a result, this midpoint is the
circumcentre O of ABC.

Now, the vector 2
−→
AO =

−−→
AB1 +

−−→
AC1 is the image under a right-angle rotation

of −
−−→
AB′ +

−−→
AC ′ =

−−−→
B′C ′, hence B′C ′ is perpendicular to OA, and as such, is
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antiparallel to BC.

Figure 4

As a corollary, remarking that ∠AGR = ∠AER = 90◦ so that the common mid-
point of AR and B′C ′ is equidistant from A,R,G,E, we obtain a characterization
mentioned in [5] with a different proof:

s is the line through A and the circumcentre of ∆AGE.

Symmedians as tangents

The next characterization is derived from an old problem proposed in 1928 in [6]
and, to the best of my knowledge, does not appear in recent books or articles:

s is the tangent at A to the circumcircle of ∆CAB′ where B′ is the
reflection of B in A.

The proof given here uses the same method as above and is completely different
from the 1928 solution by G. Excoffier.

Figure 5
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We introduce the symmetric C ′ of C aboutA, obtaining the parallelogram CBC ′B′.
Let B1 and C1 be the reflections of B′ and C ′ in the internal bisector of ∠BAC,
so that the segment B1C1 is antiparallel to BC. Let γ denote the circle through
C,A,B′ and let the tangent to γ at A intersect B1C1 at M (Figure 5). It suffices
to show that MB1 = MC1.

We shall exploit the numerous equalities of angles of the figure: first

∠AB1C1 = ∠CBA and ∠AC1B1 = ∠BCA = ∠B′C ′C

(since B1C1 is antiparallel to BC and B′C ′ is parallel to BC); second

∠(CB′, CA) = ∠(AC1, AM) and ∠(B′A,B′C) = ∠(AM,AB1)

(since AM is tangent to γ). We immediately deduce that the triangles AMC1

and CB′C ′ are similar and so are triangles AMB1 and B′CB. In consequence,
we have

MC1 = AM · B
′C ′

CB′
and MB1 = AM · CB

B′C
,

and the equality MB1 = MC1 follows from BC = B′C ′.

Symmedians and special circles through O

Our last characterization, which seems to be new, involves two particular circles
passing through the circumcentre O of ∆ABC:

s is the line through the vertex A and the point of intersection other
than O of the circumcircle of ∆BOC and the circle with diameter AO.

The proof, unlike the previous ones, leaves aside the antiparallels. Again we in-
troduce the circumcircle Γ of ∆ABC and recall that its tangent t at A intersects
BC at the pole Q of the symmedian s.

Figure 6
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Let the circles γ1 through B,O and C and γ2 with diameter AO intersect at O
and O′ (Figure 6) and let I denote the inversion in the circle Γ. Then, I(γ1) is the
line BC and I(γ2) is the tangent t so that I(O′) is the point Q of intersection of t
and BC. Since in addition AO′ is perpendicular to OO′, we conclude that AO′ is
the polar of Q with respect to Γ and the proof is complete.
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