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1 Introduction

Prime numbers are one of the fundamental entities in Number Theory. The guar-
antee of the existence of a prime number within a certain interval can be helpful in
solving several types of problems. The Bertrand-Chebyshev theorem, also known
as Bertrand’s postulate, can be very useful in this context. Here we present sev-
eral solved examples where it can be successfully used. A particular emphasis is
placed on Math olympiad-style problems and therefore the article is based solely
on elementary techniques. In addition to solved examples, this work also contains
a brief historical and theoretical background, a list of some stronger results as well
as a set of problems for self-study.

2 Historical and Theoretical Background

Postulated in 1845 by Joseph Bertrand and later proved by Pafnuty Chebyshev
in 1850, the Bertrand-Chebyshev theorem is one of the widely used theorems that
guarantee the existence of a prime number within a certain interval. The original
statement of the theorem is very simple and states the following:

Theorem 2.1 (Bertrand’s postulate) For any integer n > 3 there exists a
prime number p such that

n < p < 2n− 2.

Although it has been proved, the theorem is better known as Bertrand’s postulate
and therefore we use this synonym in the rest of the article. Also, in order to
make our calculations simpler, we will use a slightly weaker and probably easier
to remember corollary that guarantees the existence of a prime number within the
interval (n, 2n) for all integers n > 1. It can also be easily generalized to all real
numbers x > 1. Namely, if 1 < x < 2 then p ∈ (x, 2x) for some prime p. For
x ≥ 2 we have x = n + δ, where n = bxc and δ = {x}. Then n > 1 is an integer
and 0 ≤ δ < 1 so the interval (x, 2x) ≡ (n+ δ, 2n+ 2δ) contains all the integers
from (n, 2n) hence it must also contain a prime number. We use this generalized
statement throughout the article and, for the sake of simplicity, we refer to it as
Bertrand’s postulate.

Many proofs of Bertrand’s postulate can be found in the literature. Here, in
addition to the historically important first proof given by Pafnuty Chebyshev, we
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would also like to mention the well known beautiful elementary proof from 1932
given by Paul Erdős. His proof was originally published in [1] and can nowadays
be easily found at various sources on the Internet. Interestingly, it was the first
published paper of this prolific 20-th century mathematician.

3 Some stronger results

The question of the existence of prime numbers has been extensively studied in
the past two centuries and several results stronger than Bertrand’s postulate have
been proved. While providing a review of all of these results falls out of the scope
of this article, we list a few of the most relevant refinements of Bertrand’s postulate
below. For further reading we recommend [2] and [3].

In 1958 Polish mathematician W. Sierpiński postulated that for all n > 1 and k ≤ n
there exists at least one prime number in the closed interval [kn, (k + 1)n]. It is
obvious that the statement holds for k = 1 as a direct consequence of Bertrand’s
postulate. Recently, in 2008, M. El Bachraoui gave a proof for k = 2 [4]. A simple

corollary of this result is that for all n ≥ 1 the interval
Ä
n, 3(n+1)

2

ä
contains at least

one prime number. The formal proof of this refinement of Bertrand’s postulate
can be found in [5]. The case k = 3 was proved by A. Loo in 2011 [6] and it leads
to a further refinement that guarantees the existence of a prime number in the

interval
Ä
n, 4(n+2)

3

ä
for all n ≥ 3.

From the theoretical perspective, both of the refinements above are a consequence
of a refinement proved by J. Nagura in 1952. Namely, he proved that for n ≥ 25
the interval

(
n, 6n5

)
contains at least one prime number [7]. However, his proof

relies on more advanced results and concepts from Number Theory and Calculus.

Using the prime number theorem it can also be proved that for any ε > 0 there
exists n0 such that for all n > n0 the interval (n, (1 + ε)n) contains at least one
prime number. Note that this generalized statement does not give a precise value
of n0 and might be unsuitable for finding all solutions of a given equation or solving
some similar types of problems.

4 Solved Problems

Our primary goal in this article is to demonstrate the applications of the concept
of intervals containing at least one prime number and in order to achieve this goal
we use Bertrand’s postulate. Our key motivation for this choice is the fact that
Bertrand’s postulate is probably the best known among this group of theorems.
On the other hand, as we show here, it is still powerful enough in solving many
problems. However, we strongly encourage the reader to simplify the given so-
lutions and strengthen some of the problem statements from this and the next
section using refinements of Bertrand’s postulate mentioned above.
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Problem 1 Prove that for any positive integer k there exist at least three different
prime numbers having exactly k digits.

Solution. It is trivial to verify that the statement holds for k = 1. For k > 1, we
consider intervals

(
10k−1, 2 · 10k−1

)
,
(
2 · 10k−1, 4 · 10k−1

)
and

(
4 · 10k−1, 8 · 10k−1

)
.

These three intervals are obviously pairwaise disjoint and consist only of positive
integers having exactly k digits. By Bertrand’s postulate each of them contains at
leat one prime number, hence the conclusion follows.

Note that k = 1 was considered separately since in this case 10k−1 = 1 so
Bertrand’s postulate can not be applied to the interval

(
10k−1, 2 · 10k−1

)
. 2

Problem 2 Let pn denote the n-th prime number. Prove that

p1 · p2 · . . . · pn > p2n+1

holds for all n ≥ 4. (Bonse’s inequality)

Solution. We give a proof based on mathematical induction. For n = 4 we have

p1 · p2 · p3 · p4 = 2 · 3 · 5 · 7 = 210 > 112 = p25

so the inequality holds in this case.

Assume now that it holds for all positive integers n ≤ m. We prove that it also
holds for n = m+ 1. In this case our aim is to prove that

p1 · p2 · . . . · pm · pm+1 > p2m+2.

By Bertrand’s postulate there exists a prime number q such that pm+1 < q <
2pm+1 implying that pm+2 ≤ q < 2pm+1 so in order to complete our proof it is
enough to show that

p1 · p2 · . . . · pm · pm+1 > 4p2m+1.

Obviously pm+1 > 4 so it suffices to prove that

p1 · p2 · . . . · pm > p2m+1.

But the last inequality directly follows from the inductive assumption and this
completes our proof for the case n = m+ 1. The induction principle now implies
that the given inequality holds for all n ≥ 4. 2

Problem 3 If m and n are positive integers prove that

1

m
+

1

m+ 1
+ · · ·+ 1

m+ n

is not an integer.

Solution. Let

A =
1

m
+

1

m+ 1
+ · · ·+ 1

m+ n
.
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First, observe that for n ≤ m− 1 we obviously have

A < m · 1

m
= 1

hence 0 < A < 1 implying that A is not an integer in this case.

Assume now that n ≥ m. It is trivial to verify that the problem statement holds for
n = m = 1, so we may assume thatm+n > 2. Then m+n

2 > 1 and using Bertrand’s
postulate we have that there exists a prime number p such that m+n

2 < p < m+n.
As 2p > m+ n and p > m+n

2 ≥ m, the prime number p is the only number in the
closed interval [m,m+ n] that is divisible by p.

Now, if we bring all summands in A to a common denominator we obviously get

A =
p ·B + C

m · (m+ 1) . . . (m+ n)

where B ∈ N and C = m · (m+ 1) . . . (p− 1) · (p+ 1) . . . (m+ n). Analyzing the
last fraction, clearly C is not divisible by p hence its numerator is not divisible by
p. As p is one of the factors in its denominator the whole fraction can not be an
integer and this completes our proof. 2

Problem 4 Prove that the interval
(
2n + 1, 2n+1 − 1

)
, n ≥ 2 contains an integer

that can be represented as a sum of n prime numbers.

(Mathematical Reflections)

Solution. Solving this problem is equivalent to finding a set of prime numbers
{p1, p2, . . . , pn} such that 2n + 1 < A < 2n+1 − 1, where A = p1 + p2 + · · · + pn.
The construction of the set satisfying these conditions is given below.

Define p1 = 3. By Bertrand’s postulate there exist prime numbers p2, p3, . . . , pn
such that

2 < p2 < 22

22 < p3 < 23

...

2n−1 < pn < 2n.

We prove that A = p1 + p2 + · · ·+ pn belongs to the interval
(
2n + 1, 2n+1 − 1

)
.

In order to show that A > 2n + 1, note that

A = p1 + p2 + · · ·+ pn > 3 + 2 + 22 + · · ·+ 2n−1 =

2 +
(
1 + 2 + 22 + · · ·+ 2n−1

)
= 2 + 2n − 1 = 2n + 1.

Proving that A < 2n+1 − 1 can be done in an analogous way:

A = p1 + p2 + · · ·+ pn < 3 + 21 + 22 + · · ·+ 2n = 20 + 21 + · · ·+ 2n = 2n+1 − 1.

2
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Problem 5 Find all positive integers m such that

1! · 3! · 5! · · · · (2m− 1)! =

Å
m (m+ 1)

2

ã
!.

(Mediterranean M.C. 2004)

Solution. Our main idea in solving this problem is finding a prime number p which
divides the right hand side (RHS), but does not divide the left hand side (LHS)
of the given equation. In order to find such a prime, observe that for m > 1
Bertrand’s postulate guarantees the existence of a prime number p such that

2m− 1 < p < 2 (2m− 1) .

Clearly p - 1! · 3! · 5! · · · · (2m− 1)! and p ≤ 4m− 3.

Now, if 4m − 3 ≤ m(m+1)
2 , which is equivalent to m ≥ 6, we have p ≤ m(m+1)

2 .

This implies that p |
Ä
m(m+1)

2

ä
! so in this case p divides RHS, but does not divide

LHS. Consequently, there is no solution for m ≥ 6.

Therefore it remains to check cases where m < 6. Direct validation shows that
m = 1 is the only solution. 2

Problem 6 For an integer n > 3 define n? as a product of all prime numbers less
than n. Find all integers n > 3 such that

n? = 2n+ 16.

(Russia, 2007)

Solution. The LHS of given equation is divisible by 2, but not by 4. This implies
that n is an odd number (otherwise the RHS is divisible by 4). Let n = 2k+ 1 for
some integer k ≥ 2. Then our equation becomes

(2k + 1)? = 2 (2k + 9) .

By Bertrand’s postulate there exists a prime number p such that k < p < 2k.
Then p | (2k + 1)? which implies p | 2 (2k + 9). Since p ≥ k + 1 ≥ 3, p must be
an odd prime so p | (2k + 9). Now, note that p < 2k implies p < 2k + 9 so p
is a proper divisor of 2k + 9. On the other hand, since 2k + 9 is odd, it is not
divisble by 2 so its smallest divisor is greater than or equal to 3. As a consequence,
its greatest proper divisor is not greater than 2k+9

3 . Since p is one of its proper

divisors we conclude that p ≤ 2k+9
3 . This leads us to the following inequality

k + 1 ≤ p ≤ 2k + 9

3

that implies k ≤ 6. This is equivalent to n ≤ 13 so in order to complete our solution
it remains to inspect for the values of n such that 4 ≤ n ≤ 13 and n? = 2n + 16.
For 8 ≤ n ≤ 13 we have n? ≥ 2 · 3 · 5 · 7 > 2 · 13 + 16 ≥ 2n+ 16. Therefore we do
not have solutions for n ≥ 8. Direct verification for n = 4, 5, 6, 7 shows that n = 7
is the only solution of the given equation. 2
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Problem 7 Find all positive integers n for which the number of all positive di-
visors of the number lcm (1, 2, . . . , n) is equal to 2k for some non-negative integer
k.

(Estonia, IMO TST 2004)

Solution. Assume that we are given a fixed n. Our main idea in solving this
problem is finding a prime number p such that p2 < n < p3. Namely, if such
prime p exists then lcm (1, 2, . . . , n) = p2 ·A, where A is some positive integer and
gcd (A, p) = 1. This directly implies that the number of divisors of lcm (1, 2, . . . , n)
is divisible by 3 and therefore it can not be equal to 2k for some non-negative
integer k.

In order to find such a prime p, observe that for n > 4 by Bertrand’s postulate

there exists a prime number p such that
√
n
2 < p <

√
n. This directly implies

p2 < n and it remains to discuss whether n < p3 holds. Note that, by the choice
of p, we have

p3 >

Å√
n

2

ã3
= n ·

√
n

8
.

It is now obvious that p3 > n holds for all n ≥ 64 implying that there is no solution
for any such n. We may now assume that in the rest of our solution n < 64.

Although the brute force approach is already applicable at this point, we can avoid
it for most of the cases by providing an exact value of p depending on n. It is
enough to observe that p = 5 works for all n such that 25 < n < 64. Similarly, if
9 < n ≤ 25 we have 32 < n < 33 leading to the choice p = 3. For n ≤ 9 direct
verification shows that n = 1, 2, 3, 8 are the only solutions. 2

5 Problems for Self-study

Problem 1 Let pn denote the n-th prime number (i.e. p1 = 2, p2 = 3, p3 = 5,
. . . ). Prove that pn ≤ 2n.

Problem 2 Find all integers n > 1 and m > 1 such that

1! · 3! · 5! · · · (2n− 1)! = m!.

(American Mathematical Monthly)

Problem 3 Determine all triplets of positive integers (k,m, n) such that

n! = mk.

(Singapore IMO training)

Problem 4 Find the greatest integer that cannot be written as a sum of distinct
prime numbers.

(Mathematical Reflections)
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Problem 5 Prove that the number

an =
2n∑
k=n

(2k + 1)
n

k

is not an integer for any positive integer n.

(Austria, Regional Competition, 2008)

Problem 6 Prove that for each positive integer k the integers {1, 2, . . . , 2k} can
be arranged into k disjoint pairs so that the sums of the elements in each pair is
prime.

Comment: For a proof and some interesting applications of this result see [8].

Problem 7 Determine all triplets (a, b, c) of positive integers that satisfy

a! + bb = c!.

(Crux Mathematicorum)

Problem 8 Let n be a natural number such that m divides n for each positive
integer m <

√
n. Prove that n < 49.

(Albania NMO 2005)

Hint : We suggest using Nagura’s refinement of Bertrand’s postulate for the re-
maining three problems given below.

Problem 9 Find the smallest positive integer n0 such that for all integers n > n0
the interval (n, 2n) contains at least three prime numbers.

Problem 10 Let pn denote the n-th prime number. Prove that

5

2
≥ pn−1 + pn+1

pn
≥ 3

2
.

(www.artofproblemsolving.com)

Problem 11 For each positive integer n , determine the least integer m such that

lcm {1, 2, . . . ,m} = lcm {1, 2, . . . , n} .

(American Mathematical Monthly)
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