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Puzzle 1 : Some apples and oranges are distributed among 99 boxes. Prove that
we can choose 50 boxes so that together they contain at least half of all the apples
and at least half of all the oranges.

This puzzle was given in the All-Russian Mathematical Olympiad in 2005. We
invite the reader to try this puzzle before moving on.

First, if there are only apples, and we would like to choose 50 boxes so that together
they contain at least half of the apples, that’s easy. We just choose the 50 boxes
with the greatest number of apples. Also, we can see that the bound 50 is tight.
If every box contains one apple, and we are only allowed to choose 49 boxes, any
effort will be fruitless – we will always get less than half of the apples no matter
what we do.

But we have apples and oranges. What are we going to do ? We want to choose a
subset with 50 boxes that satisfy two (symmetric) properties simultaneously. If we
can show that the number of subsets that satisfy one property is greater than half
of the number of all subsets of size 50, we would be done – some subset satisfies
both properties at once. What we are guessing is stronger than what the puzzle
asks for, so we are making a gamble. Nevertheless, the statement is true. To show
that, we will make a little set-theoretic detour.

Recall that given a set of size 2n + 1, the number of subsets of size n is equal to
the number of subsets of size n+ 1. That means we can pair up the subsets of size
n with the subsets of size n+ 1. What is more interesting is that we can do it in
a rather special way : Each subset of size n is a subset of its pair of size n+ 1.

Lemma 1 Let N = {1, 2, . . . , n} and 0 ≤ k < n/2. Let A be the collection of all
subsets of N of size k, and B be the collection of all subsets of N of size k + 1.
Construct a bipartite graph G with vertices A ∪ B in such a way that there is an
edge joining X ∈ A and Y ∈ B if and only if X ⊆ Y . Then there exists a matching
between all the elements of A and (not necessarily all) the elements of B.

This Lemma is given as an exercise without solution in [3]. The following proof is
based on the hint for the exercise.

Proof. We define a matching f . For any set X ∈ A (which has size k), let f(X) be
a subset of N of size k + 1 that contains X ; the single element that is added to
f(X) is determined in the following way :

Suppose X = {a1, a2, . . . , ak}, where a1 < a2 < . . . < ak, and define a0 = 0. Let
m be the largest among the indices 0 ≤ i ≤ k for which 2i−ai is maximized. Then
f(X) = X ∪ {am + 1}.

First, we show that f(X) is well-defined. To that end, we prove that am cannot
be the largest element, n. Indeed, if that were the case, then 2m−am = 2m−n ≤
2k−n < 0 = 2 ·0−a0, contradicting the definition of m. We also prove that am+1
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cannot already be present in X. Indeed, if it were, then it would have index m+1.
But then 2(m+ 1)− am+1 = 2m+ 2− (am + 1) = 2m− am + 1 > 2m− am, once
again contradicting the definition of m.

Now we show that for any two distinct sets X,Y ∈ A, the sets f(X) and f(Y ) are
distinct. Equivalently, any subset Z of N of size k+ 1 can be an image of at most
one subset of size k. Consider the elements of Z = {a′1, a′2, . . . , a′k+1}. We show that
the added element corresponds to the first index that maximizes the value 2i−ai.
Originally, the index m had the value 2m− am = r maximized. The values 2i− a′i
for i = 1, 2, . . . ,m are unchanged. The new element, a′m+1, has the corresponding
value 2(m+ 1)− am+1 = 2(m+ 1)− (am + 1) = r + 1. For a′m+2, a

′
m+3, . . . , a

′
k+1,

the corresponding values 2i−a′i are 2(i+ 1)−ai = 2i−ai+ 2. By the definition of
m, we have that 2i− ai < 2m− am, which is equivalent to 2i− ai ≤ 2m− am− 1.
Hence 2i − ai + 2 ≤ 2m − am + 1 = r + 1. This means m + 1 is the first index
that maximizes the value 2i− ai, as desired. Hence, Z is an image of at most one
k-element set X with respect to the matching f . �

We are now ready to show that the number of subsets with 50 boxes that contain
at least half of all the apples is greater than half of the number of all subsets
with 50 boxes. First, each subset with 50 boxes can be uniquely paired with its
complement, which is a subset with 49 boxes. Of the two subsets, at least one has
at least half of all the apples. If at least half of the subsets with 50 boxes have at
least half of the apples, we are done. Otherwise, at least half of the subsets with
49 boxes have at least half of all the apples. Using Lemma 1, the subsets with 50
boxes that are matched with these subsets with 49 boxes also have at least half of
the apples, which means we are done.

But are we ? We want to show that the number of subsets with 50 boxes that
contain at least half of all the apples is greater than half of the number of all subsets
with 50 boxes. We have only shown that it is at least half, so there is more work
to do. The only case in which it might be exactly half is when exactly half of the
subsets with 49 boxes and exactly half of the subsets with 50 boxes contain at least
half of all the apples, and they correspond to one another in the matching induced
by Lemma 1. Assume that the boxes contain a1 ≥ a2 ≥ . . . ≥ a99 apples, and
assume without loss of generality that one pair in the matching is {a3, a5, . . . , a99}
and {a1, a3, a5, . . . , a99}. The former set contains less than half of all the apples.
Indeed, a3 + a5 + . . .+ a99 ≤ a2 + a4 + . . .+ a98 < a1 + a2 + a4 + . . .+ a98. (Unless
a1 = 0, but that would imply a1 = a2 = . . . = a99 = 0, and the situation can be
handled separately.) On the other hand, the latter set contains at least half of all
the apples. Indeed, a1+a3+a5+ . . .+a99 ≥ a1+a3+ . . .+a97 ≥ a2+a4+ . . .+a98.
So we are really done this time.

The good news is that we have solved the puzzle. The bad news is that the Russian
Olympiad is organized for students of several class years separately, and it is
sometimes the case that the jury proposes similar puzzles to different class years,
adjusting the difficulty accordingly. This is in fact the case here, and the puzzle
we have solved is for 8th grade students. Here is the one for 9th graders :
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Puzzle 2 : Some apples and oranges are distributed among 100 boxes. Prove that
we can choose 34 boxes so that together they contain at least one-third of all the
apples and at least one-third of all the oranges.

Unfortunately, it seems hard to apply the same method when the concerned sets
include only around one-third of the boxes. Let us start by again sorting the
boxes according to the number of apples, say, a1 ≥ a2 ≥ . . . ≥ a100. The crucial
observation is that choosing boxes 1, 4, 7, . . . , 100 is enough to guarantee at least
one-third of all the apples. Indeed, a1+a4+a7+ . . .+a100 ≥ a2+a5+ . . .+a98 and
a1+a4+a7+. . .+a100 ≥ a3+a6+. . .+a99. This hints at splitting the boxes into 34
groups : {1}, {2, 3, 4}, {5, 6, 7}, · · · , {98, 99, 100}. By the observation we just made,
choosing any 34 boxes, one from each group, will guarantee us at least one-third
of all the apples. Consequently, we can choose the box with the greatest number
of oranges from each group and guarantee ourselves at least one-third of all the
oranges as well.

This solution can also be applied to our first puzzle quite easily. Moreover, it has
the merit of being constructive – if we actually have to choose the boxes rather
than just proving their existence, it gives us a method to do it within a reasonable
amount of time.

Before we move on, it is worth asking what happens in the first puzzle when we
change the number 99 to 100 (or any other even number). What is the least number
for which there always exists some subset with that number of boxes that together
contain at least half of the apples and at least half of the oranges ? If we choose
50 out of 99 boxes using our previous method, and then choose the 100th box, we
achieve our goal using 51 boxes. Is that the best we can do ? It is, when 49 boxes
contain one apple each and no oranges and the remaining 51 boxes contain one
orange each and no apples.

Now comes a remarkable thing. Even if we have a third type of fruit, we can still
choose 51 out of the 100 boxes so that they together contain at least half of each
type of fruit. This is exactly what 11th graders were tasked in the Olympiad. Here
is the formal statement :

Puzzle 3 : Some apples, oranges, and bananas are distributed among 100 boxes.
Prove that we can choose 51 boxes so that together they contain at least half of
all the apples, at least half of all the oranges, and at least half of all the bananas.

This puzzle is quite difficult, and none of the students managed to solve it in
the actual Olympiad. The methods we have so far don’t seem to extend easily to
accommodate for the third type of fruit. Focusing on just one type of fruit leaves
us in trouble in satisfying the guarantee for the other two types. We would like to
somehow deal with two types of fruit at once. We begin with the following cute
lemma.

Lemma 2 Let (a1, b1), (a2, b2), . . . , (a2n, b2n) be pairs of positive integers. They
can be partitioned into two groups of n pairs each so that if A1 and A2 denote the
sum of the ai in the first and second group respectively, then |A1 −A2| ≤ maxi ai,
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and an analogous statement holds for bi.

Proof. We sort the pairs according to ai in descending order, and split the pairs into
n groups : {(a1, b1), (a2, b2)}, {(a3, b3), (a4, b4)}, . . . , {(a2n−1, b2n−1), (a2n, b2n)}. If
we choose n pairs, one from each group, the difference in ai will not exceed a1.
Indeed, the maximum difference is a1 − a2 + a3 − a4 + . . .+ a2n−1 − a2n ≤ a1.

We first choose any n pairs, one from each group. Suppose that the difference in bi
exceeds maxi bi. Assume without loss of generality that the sum of bi in the first
group is greater than that in the second group. This means there exists two pairs,
say (a2i−1, b2i−1) and (a2i, b2i), such that b2i−1 > b2i, the first pair belongs to
the first group, and the second pair belongs to the second group. We switch these
two pairs. The difference in bi changes by no more than 2b1, so the absolute value
strictly decreases. We continue this process as long as the difference in bi exceeds
maxi bi. Since there are only finitely many partitions, the process necessarily stops,
giving us the desired partition. �

We are now ready to solve the 11th grade puzzle. In fact, the solution will be short
and sweet. We first choose a box with the greatest number of apples, and from
the remaining boxes we choose a box with the greatest number of oranges. Now,
thanks to Lemma 2, we can partition the remaining 98 boxes into two groups of
49 boxes so that the difference between the apples does not exceed the box with
the greatest number of apples, and likewise with oranges. We choose the 49 boxes
with more bananas. Combined with the first two boxes, we have our desired set of
51 boxes.

Finally, what if there are more types of fruit ? If there are apples, oranges, bananas,
and pears distributed among 100 boxes, what is the least number for which there
always exists some subset with that number of boxes that together contain at least
half of each type of fruit ? We leave this as an open puzzle for the reader.

Note : Credit for the puzzles from the Olympiad is due to I. Bogdanov, G. Chel-
nokov, and E. Kulikov. The solutions are also due to them, except for the non-
constructive solution to the first puzzle, which the author came up with.
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