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THE OLYMPIAD CORNER
No. 256

R.E. Woodrow

In this issue we present the problems of the three rounds of the Iranian
Mathematical Olympiad 2002. Thanks go to Andy Liu, Canadian Team Leader
to the IMO 2003 in Japan, for collecting the contests for our use.

IRANIAN MATHEMATICAL OLYMPIAD 2002
First Round
Time: 2 x 4.5 hours

1. Find all permutations (a,...,ay) of (1,...,n) which have the property
that ¢ 4 1 divides 2(ay + --- + a;) forevery i, 1 < i < n.

2. A rectangle is partitioned into small rectangles so that the edges of the
small rectangles are parallel to the edges of the first rectangle. We call a
point a cross point if it belongs to four different small rectangles. We call a
segment maximal if there is no other segment containing it.

Show that the number of maximal segments plus the number of cross
points is 3 less than the number of small rectangles.

3. In the convex quadrilateral ABC D, we have ZABC = ZADC = 135°.
There are two points M and N on the rays AB and AD, respectively, such
that /MCD = Z/NCB = 90°. The circumcircles of AMN and ABD
intersect at A and K. Prove that AK | KC.

4 1et A and B be two fixed points in the plane. Let ABCD be a convex
quadrilateral such that AB = BC, AD = DC, and ZADC = 90°. Prove
that there is a fixed point P such that, for every such quadrilateral ABC D
on the same side of the line AB, the line DC passes through P.

5. Letsbea symbol such that § # 0 and §2 = 0. Define

R6] = {a+bd|a,beR}
a+bd=c+dé < a=cand b=d,

(a4+bd)+ (c+dd) = (a+c)+ (b+4d)I,
(a4+bd)-(c+dd) = acH+ (ad+bec)d.

Let P(x) be a polynomial with real coefficients. Show that P(x) has a
multiple root in R if and only if P(x) has a non-real root in R[4].

6. Let G be a simple graph with 100 edges on 20 vertices. We can choose a
pair of disjoint edges in 4050 ways. Prove that G is regular.
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Second Round
Time: 2 x 4.5 hours

1. The sequence {a, } is defined by ap = 2,a1 =1, and apn4+1 = an + an—_1
for n > 1. Show that if p is a prime factor of as, — 2, then p is a factor of
azp+1 — 1.

2. Let A be a point outside the circle £2. The tangents from A to 2 touch € at
B and C. A tangent L to Q intersects AB and AC at P and Q, respectively.
The line parallel to AC passing through P meets BC at R. Prove that as L
varies, QR passes through a fixed point.

3. An ant moves on a straight path on the surface of a cube. If the ant
reaches an edge, it goes on in such a way that if the cube were opened to
make the adjacent faces coplanar, the path would become a straight line. If
the ant reaches a vertex, it returns on the same path.

(a) Show that for every starting point of the ant, there are infinitely many
directions for the ant to move in a periodic path.

(b) Show that if the ant starts on a fixed face, the periodicity of the path
depends only on the direction (not the starting point).

4 Find the smallest positive integer n for which the following condition
holds: For every finite set of points in the plane, if, for every n points in
this set, there exist two lines covering all n points, then there exist two lines
covering all points in the set.

5. Let I be the incentre of triangle ABC. Assume that the incircle touches
AB and AC at X and Y, respectively. The line through X and I meets the
incircle at M. Let X’ be the point of intersection of AB and CM. Point L
is on the segment X’C such that X'L = CM. Prove that A, L, and Y are
collinear if and only if AB = AC.

6. Let a, b, and c be positive real numbers such that a2 + b2 + 2 + abc = 4.
Prove thata + b + ¢ < 3.

Third Round

Time: 2 x 4.5 hours

1. Find all real polynomials P(x) such that P(a) € Z implies that a € Z.

2. Let E be a fixed ellipse. Let B; be an arbitrary point outside E. The
tangent from B, to E touches F at a point C;. Let B, be a point on the line
of B1C; such that B;C; = C1B-. For each positive integer ¢, define B,
in terms of B; in this manner. Prove that the sequence {B;} is bounded in
the plane.
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3. ma triangle ABC, define C, to be the circle tangent to AB, to AC, and
to the incircle of the triangle ABC, and let r, be the radius of C,. Define
ry and r. in the same way. Prove that r, + r, + r. > 4r, where r is the
inradius of the triangle ABC.

L4 Let n and k be integers such that 2 < k < n. Let F be a subset of
P({1, ..., n}) with the property that, for every F', G € F, there exists an
integer t suchthat1 <t <mnand {t,t+1,...,t+k—1} C FNG. Prove
that |F| < 2n—k.

5. For every real number z define () = min({z}, {1 — =}), where {z}
denotes the fractional part of . Prove that, for every irrational number «
and every positive real number ¢, there exists a positive integer n such that
(na) < e.

—_—_— N~ S ————

We next give an alternative solution to problem 4 of the Hong Kong
(China) Contest, for which we published a solution in the December 2005
number of the Corner.

4. [2004 : 84; 2005 : 522-523] Hong Kong (China) Olympiad 1999.
Determine all functions f : R — R such that, for all z, y € R,

flz+yf(x) = flx)+=f(y).

Alternate solution by B.]. Venkatachala, Indian Institute of Science,
Bangalore, India.

The function which is identically 0 clearly satisfies the given condition,

flz+yf(@) = flx)+zf(y). M

Now let f be any other function satisfying this condition. We will show that
f must be both additive and multiplicative, which implies that f(x) = = for
all z € R.

Taking x = 1 and y = 0 in (1), we get f(0) = 0. If f(x) = O for some
x, then

0 = f(x) = fz+yf(@) = flx)+zf(y) = =f(y).

Choosing y such that f(y) # 0, we see that x = 0. Thus, f(xz) = 0 implies
x = 0.

Putting z = 1, we get f(1 + yf(1)) = f(1) + f(y), forall y € R.
If £(1) # 1, we may choose y = 1/(1 — f(1)). This gives 1 + yf(1) = y;
hence, we obtain f(y) = f(1+yf(1)) = f(1)+ f(y) forcing f(1) = 0. This
leads to the absurdity that 1 = 0. Hence, f(1) = 1. Taking x = 1 in (1), we
obtain f(1+y) =1+ f(y) forally € R.
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Take any = # 0. Then f(x) # 0. Setting y = 1/f(x) in (1), we get
flet1) = f@) +of (55) -

We conclude that f (f( )> 1 forallz # 0. Replacing y in (1) by y/ f(x)
with = # 0, we get

fle+v) = 1@ +af (7L5) @
valid for all x £ 0 and y € R. Replacing = by 1/f(x) in (2) gives
1+yf(x)) _ 1, 1
F(EEE) = Ly s, )

which is again valid for all z # 0 and y € R. Replacing y in (2) by 1 4+ yf(x)
and using (3), we obtain

fle+1+yf(z) = f(w)+wf<1+yf(w)> = fl@)+1+4 505 wa).

f(z)
Since f(x + 1) = f(x) + 1 for all x € R, this simplifies to

flz+yf(x) = fl@) + 5~ Fyz).

f()

f()

We then use (1) to obtain zf(y) = 7@ )f(yac) Since = # 0, we get

f(zy) = f(x)f(y). This last equation is valid for z = 0, since f(0) = 0.
Thus, f(xy) = f(x)f(y) forall z, y € R. Using this in (2), we get additivity:

flx+y) = f(x) +afW)f(1/f(x) = f(=)+ fy),

for all z, y € R. Thus, f is both additive and multiplicative. Since f is not
the zero function, it follows that f(z) = = for all z € R.

—_— N r——

We now turn to solutions from our readers to problems of the 2" Czech-
Polish-Slovak Mathematical Competition, written in Zwardon, Poland, June
2002 and given in [2005 : 152-153].

4. An integer n > 1 and a prime p are such that n divides p — 1, and p
divides n3 — 1. Show that 4p — 3 is the square of an integer.
Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Since n divides p — 1, we deduce that p =1 (mod n) and n < p — 1.
It follows that n — 1 < p. Since p is prime, we have ged(n — 1,p) = 1.
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Since p divides n® — 1 = (n — 1)(n? + n + 1), it follows from Gauss’
Theorem that p divides n?2 +n + 1. Let n® + n + 1 = kp, where k is a
positive integer. Then k = kp =n? +n+1 =1 (mod n). Moreover,

2 2
k:w§w<n+l_
P n+1

Therefore, k =1 and p = n? + n + 1. Then
4p—3 = 4(n*+n+1) -3 = (2n+1)3?,
and we are done.

5. In an acute-angled triangle ABC with circumcentre O, points P and Q
lying respectively on sides AC and BC are such that

AP  BC and BQ  AC
PQ AB PQ AB’
Show that the points O, P, Q, and C are concyclic.

Solution by Michel Bataille, Rouen, France.

We will use standard notation for the sides, angles, and circumradius
of AABC'. Define k = AP/a. Using the given equations, we get

k_AP_BQ_PQ
a b ¢

ThenCP =b— AP =b—ka and CQ = a — BQ = a — kb.
A

B

The Law of Cosines gives

k2c?

PQ? = (a —kb)? + (b—ka)? — 2(a — kb)(b — ka) cosC
(1 + k?)(a® + b* — 2abcos C) — 4kab + 2k(a® + b*) cos C
= (14 k%c® —2k(2ab — (a®> + b*) cos C)
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and hence,
® = 2k(2ab— (a® +b*)cosC) .
But, using the Law of Sines, we have
2ab — (a? + b*) cos C
= 8RZ?sin Asin B — 4R? cos C(sin® A + sin? B)
= 4R?[cos(A — B) — cos(A + B) — cos C(sin? A + sin?® B)]
4R?sin? C cos(A — B) = c?cos(A — B),
where we have used the identity
cos(A — B)cos(A 4+ B) = cos? A(1 —sin® B) — sin® B(1 — cos? A)

= cos? A —sin?B.

1
It follows that k = Zeos(A_B)
Since ZAOC = 2B and OA = OC, we have ZOAP = 90° — B. Thus,
OP? = OA?+ AP? —20A - AP cos(90° — B)

= R?+k%a® — 2kRasin B
2,2 (1 . 2 1. .
= 4R°k* | — 4+ sin“ A — —sin Asin B
4k? k
= 4R?*k*[cos’(A — B) + sin® A — 2 cos(A — B) sin Asin B]|
= 4R?K? [cos2 (A— B) +sin? A
— cos(A — B) (cos(A — B) —cos(A + B))}
= 4R%k?(sin® A + cos? A —sin? B) = 4R?*k®cos’ B.
Therefore, OP = 2kR cos B. Similarly, OQ = 2kR cos A. Now,
OP.-CQ+0Q-CP
= 4kR?*(cos Bsin A — ksin B cos B + cos Asin B — ksin A cos A)
= 4kR?[sin(A + B) — ksin(A + B) cos(A — B)]
4kR? (sinC — 1sinC) = 2kR?’sinC = R-kc = OC-PQ,
where we have used the identity
sin(A + B) cos(A — B) = sinAcos A +sinBcosB.

It follows from Ptolemy’s Theorem that O, P, Q, C are concyclic.

Note: Since AP - AC = BQ - BC, the points A and B have the same
power with respect to the circumcircle I' of ACPQ. Thus, letting U be the
centre of T and p be the radius of T, we have UA% — p2 = UB? — p2. It
follows that UA = UB, and U is on the perpendicular bisector of AB. This
remark provides an easy construction of points P, @ satisfying the conditions
of the problem: draw the perpendicular bisectors of AB and OC, which meet
at U. Then the circle with centre U passing through C meets the sides AC
and BC again at P and Q, respectively.
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Next we move to the May 2005 number of the Corner and readers’
solutions to problems of the Singapore Mathematical Olympiad 2002, Open
Section, Part A, given in [2005 : 215-216].

1. Lets (x) be a function which satisfies
f(294z) = f(29 —x),

for all values of z. If f(x) has exactly three real roots «, 3, and ~, determine
the value of o + 3 + ~.

Solved by Robert Bilinski, Collége Montmorency, Laval, QC; Pierre
Bornsztein, Maisons-Laffitte, France; Geoffrey A. Kandall, Hamden, CT, USA;
Gustavo Krimker, Universidad CAECE, Buenos Aires, Argentina; Pavlos
Maragoudakis, Pireas, Greece; and Edward T.H. Wang, Wilfrid Laurier
University, Waterloo, ON. We given Krimker’s solution.

Since f has exactly three real roots and f has the same value at points
symmetric about 29, one of the roots must be 29. Let v = 29. The other
two roots, « and 3, must be symmetric about 29; hence, = 29 + = amd
B = 29 — x for some real number = # 0. Therefore,

2. John left town A at z minutes past 6:00 pm and reached town B at y
minutes past 6:00 pm the same day. He noticed that at both the beginning
and the end of the trip, the minute hand made the same angle of 110 degrees
with the hour hand on his watch. How many minutes did it take John to go
from town A to town B?

Solved by Robert Bilinski, Collége Montmorency, Laval, QC; Geoffrey A.
Kandall, Hamden, CT, USA; and Pavlos Maragoudakis, Pireas, Greece. We
give the solution of Kandall.

0 0

30 30
30 + x/12 30 4+ y/12
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It is implicit that 0 < £ < y < 60. Since an angle of 110° corresponds
to 55/3 minutes, we have the following equations:

30+w 55 30+y> 55
—_— —-—r = —, — —_— = — .
12 3 Y 12 3

Hence, iz = 30 — 32 and 1y = 30 + 32, from which we get y — = = 40.
This is the time of the trip in minutes.

3. Let 1 = 201W Forn Z 1, define NTp41 = (TL + 1):13” + 1. Find 2002 -
Solved by Robert Bilinski, Collége Montmorency, Laval, QC; Pierre
Bornsztein, Maisons-Laffitte, France; Gustavo Krimker, Universidad CAECE,
Buenos Aires, Argentina; Pavlos Maragoudakis, Pireas, Greece; and Edward
T.H. Wang, Wilfrid Laurier University, Waterloo, ON. We give the write-up
of Krimker.

The sequence z,, = n/2002 + n — 1 satisfies the recurrence relation of
the problem. Indeed, ; = 1/2002, and

n+1 > n(n+1) 2
n| = ———~4+n

NnL, = n
+ ( 2002 2002

n
— S— —_— = 1 n 1.
(n+1)<2002+n 1>+1 (n+ 1)z, +
Then, 2002 — 2002.

4 For integers n > 1, let a,, = n? 4 500 and d,, = gcd(an,ant1)-
Determine the largest value of d,,.

Solved by Pierre Bornsztein, Maisons-Laffitte, France; Pavlos Maragoudakis,
Pireas, Greece; and Edward T. H. Wang, Wilfrid Laurier University, Waterloo,
ON. We give the solution by Wang, modified by the editor.

The answer is 2001, attained when n = 1000.
Since d,, divides both a,, and a,, 1, it follows that d,, divides

Qpi1—an = (n+1)2 4500 — (n? 4+ 500) = 2n + 1.

Then d,, divides n(2n + 1) = 2n? + n, and consequently, d,, also divides
2n? + n — 2a,, = n — 1000. Since 2n + 1 — 2(n — 1000) = 2001, we deduce
that d,, | 2001.

Suppose d,, = 2001 = 3.23.29. Then d,, is divisible by 3, 23, and 29.
Since 2n + 1 = 0 (mod 3), we have 2n = —1 = 2 (mod 3); that is,

n = 1 (mod 3) . 1
Similarly, since 2n + 1 = 0 (mod 23), we have 2n = —1 = 22, or

n = 11 (mod 23) , (2)
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and since 2n + 1 = 0 (mod 29), we have 2n = —1 = 28, or
n = 14 (mod 29) . 3)

Applying the Chinese Remainder Theorem and using the standard method,
we let M; = 23-29 = 667, My = 3-29 = 87 and M3 = 3 -23 = 69,
and we then solve the following system of congruences:

667r = 1 (mod 3), (4)
87z = 1 (mod 23), (5)
69z = 1 (mod 29) . (6)

By routine methods, we find the least positive solutions of (4), (5), and (6)
tobex; = 1, z = 9, and z3 = &, respectively. Hence, a solution to the
system (1), (2), and (3) is given by

n =1-667-1+11-87-94+14-69-8 = 17008 = 1000 (mod 2001) .
Conversely, when n = 1000, we have

d, = gcd(1000% 4 500,10012% + 500)
= gcd(500 - 2001, 501 - 2001) = 2001 .

Thus, 2001 is a value for d,, (attained when n = 1000). There cannot be any
larger value for d,,, since d,, divides 2001.

5. Itis given that the polynomial p(z) = 23+ az? + bz + ¢ has three distinct
positive integer roots and p(2002) = 2001. Let g(x) = =% — 2x + 2002. It
is also given that the polynomial p(g(x)) has no real roots. Determine the
value of a.

Solved by Pierre Bornsztein, Maisons-Laffitte, France; Gustavo Krimker,
Universidad CAECE, Buenos Aires, Argentina; and Pavlos Maragoudakis,
Pireas, Greece. We give the solution by Krimker, modified by the editor.

The polynomial g(z) = (z — 1)2? + 2001 takes on every value in the
interval [2001, co). Since p(g(x)) has no real roots, all three roots of p(x)
must be less than 2001. Denoting the roots of p(x) by z1, =2, x5, we have

p(z) = (z—z1)(z — z2)(z — x3) -

Then p(2002) = (2002 — x1)(2002 — x3)(2002 — x3) = 2001 = 3 - 23 - 29.
Since each factor 2002 — x; is a positive integer, we must have

{2002 — x1, 2002 — x5, 2002 — mg} = {3, 23, 29},
and hence {x1, z2, 3} = {1999, 1979, 1973}. Then

a = —(x1 4+ x2+ x3) = —5951.
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6. Find the largest positive integer IN such that V! ends with exactly twenty-
five “zero” digits.

Solved by Robert Bilinski, Collége Montmorency, Laval, QC; Pierre
Bornsztein, Maisons-Laffitte, France; Pavlos Maragoudakis, Pireas, Greece;
and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON. We give
Wang’s solution.

Let f(IN) denote the number of zeroes at the end of N!. Then f(INV)
equals the number of factors of 10 that may be formed in IV!. Since 10 = 5x 2
and there are clearly fewer 5s than 2s, it follows that f(IV) is equal to the
number of factors of 5in1-2-3..- N. Then (by a well-known formula)

N = 3 ElR

k=0

By straightforward computations, we find that

109 109

while
f(110) = 110 + 190} _ 5y +4 = 26
L5 25 | o
Since f is an increasing function, we see that the required value of IV is 109.

7. A circle passes through the vertex C of a rectangle ABC'D and touches
its sides AB and AD at points M and NN, respectively. Suppose the distance
from C to M N is 2 cm. Find the area of ABCD in cm?2.

Solved by Bruce Crofoot, Thompson Rivers University, Kamloops, BC;
Geoffrey A. Kandall, Hamden, CT, USA; and Pavlos Maragoudakis, Pireas,
Greece. We present a composite of the solutions by Crofoot and Kandall.

The answer is [ABCD] = 4 cm?.
More generally, let d be the distance A M B
from C to M N. We introduce additional
notation as shown in the diagram. Since
AB is tangent to the circle at M, we have u

/ZBMC = ZLMNC = ZPNC.

Hence, ABMC is similar to APNC. »
Similarly, ADNC is similar to APMC.
Consequently,

BC Uu DC v
— = — and — = —.
d v d u
From these two equations, we get BC - DC = d?; that is, [ABCD] = d?.
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8. Let m = 144s5in”= + 144°°s° = How many such m’s are integers?

Solved by Robert Bilinski, Collége Montmorency, Laval, QC; Pierre
Bornsztein, Maisons-Laffitte, France; Pavlos Maragoudakis, Pireas, Greece;
and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON. We give
the solution by Wang.

The answer is 122. Indeed, we prove that all the integers from 24 to
145 inclusive are attainable.

Consider the function f(t) = 144 + 144'~t where t = sin® . Then
0 <t < 1. Since f/(t) = (In144)(144* — 144'~*), we have f/(¢) = 0 if and
only if t = 1. Since f’(t) > 0 if and only if £ < ¢ < 1, we see that f is
decreasing on (0, 1) and increasing on (1, 1). Hence, the absolute minimum
of fis f(3) = 24 (attained when = Z, for example), and the absolute
maximum of fis f(0) = f(1) = 145 (attained when = = 0, for example).

Since f is a continuous function, the Intermediate Value Theorem then
guarantees that every integer between 24 and 145 is also attainable, and our
claim follows.

2002 2002
k - k! k! 2003!
9. Evaluate > 5 23002 °

k
k=1 k=1 2

Solved by Pierre Bornsztein, Maisons-Laffitte, France; Gustavo Krimker,
Universidad CAECE, Buenos Aires, Argentina; and Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON. We give Krimker’s write-up.

The expression we are trying to evaluate may be rewritten as

Z": (k—1)k! (n+1)!
= 2k 2n
where n = 2002. We will prove by induction that this is equal to —1 for
every positive integer n.
Note that the claim is true for n = 1. Suppose now that n > 2 and
that the equality is valid for n — 1. We will show that it holds for . Indeed,

z": (k—1)-k' nz_:l(k:—l)-k:! +n!(n—1)
k=1 2k k=1 2k 2m
_n! 1 n!(n —1)
- on—1 2n
_ 2n!+nl(n—1) 1 - n!(2+n-—1) 1
N 2n N 2n
! 1 1)!
_ ety o DY
2m 2n

Thus, the claim is true for all positive integers n.
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10. How many ways are there to arrange 5 identical red, 5 identical blue,
and 5 identical green marbles in a straight line such that every marble is
adjacent to at least one marble of the same colour as itself?

Solution by Pavlos Maragoudakis, Pireas, Greece.

There are 426 ways.

Each set of 5 marbles of the same colour must remain together or else be
separated into two groups, with 2 adjacent marbles and 3 adjacent marbles.
Thus, we have the following cases:

(i) The three quintuplets of the same colour remain ‘united’.
There are then 3 groups of marbles. We have 3! = 6 ways to arrange
them.

(ii) We choose one colour and ‘break’ it into the two possible parts,
while we leave the other two colours ‘united’.

There are then 4 groups of marbles. The two parts of the ‘broken’
colour should be non-adjacent among the 4 groups; thus, we have 3 choices:
(15,3, or (1,4™), or (2M,4%). We have 3-3 -2 -2 = 36 ways.

(iii) We choose two colours and ‘break’ them.

There are then 5 groups of marbles. We place the two parts of the 15¢
‘broken’ colour in two non-adjacent spots, and we do the same for the 2™
‘broken’ colour. We have 6 choices.

15tcolour 2"dcolour
(1st , 3rd) (2nd ’4th)
(1st’3rd) (2nd’5th)
(1st Y4th) (2nd ) 5th)
(1st ,4th) (3rd , 5th)
(1st ' 5th) (znd ,4th)
(2ndy4th) (3rd’5th)

We have 6-3-2-2.2 = 144 ways.

(iv) We ‘break’ all colours.
This gives 6 groups of marbles. We have 5 choices:

1stcolour 2™colour 3"colour
(1sty3rd) (2ndy5th) (4th’6th)
(1st ,4th) (an Y5th) (3rd ,Gth)
(1st , 5th) (an ,4th) (3rd ,ﬁth)
(1st’6th) (an ,4th) (3rd '5th)
(1st’4th) (an Y4th) (3rd Y5th)

We have 5-3.2-2.2. = 240 ways.
Altogether, we have 6 + 36 + 144 + 240 = 426 ways.

—_— N S ————
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Now we turn to Part B of the Singapore Mathematical Olympiad given
in [2005 : 216].
2. Let ai, as, ..., a, and by, bs, ..., b, be real numbers between 1001 and
" n
2002 inclusive. Suppose Y a? = > b2. Prove that
1=1 =1
a

= >
b, —

S|

n
1=

17 N,
1 Za’i :
1 i=1

Determine when equality holds.
Solution by Pierre Bornsztein, Maisons-Laffitte, France, modified by the
editor.

There is a misprint. The given inequality is false if a; = b; for each .
The correct inequality is

17
1

t

1 (2

n

n
E 2
a; .
1=1

o

(3

We will now prove this inequality.
For each 2z, we have

1 1001 a; 2002

2 2002 — b, — 1001 '
and therefore (2a; — b;)(2b; — a;) > 0; that is,

Multiplying this inequality by a;/b;, we get
a3
5a2 > 2b—1 + 2a;b; . 8

3

From (7), we have 2a;b; > 2 (a2 +b?). Using this inequality in (8), we obtain

which may be rewritten as
A iy i 9)

Note that equality occurs in (9) if and only if b; = 2a; or a; = 2b;; that is, if
and only if (a;, b;) = (1001, 2002) or (a;, b;) = (2002,1001).
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Summing over ¢ in (9) and recalling that Z b? = Z a?, we get
=1 i=

z:: Zf:rﬁ aizr

<

“a
23, S

k= \

as desired.
Equality occurs if and only if, for each i, either (a;, b;) = (1001, 2002)

or (a;, b;) = (2002,1001). The condition Z a? = Y b? can be rewritten as
i=1

10012p + (n — p)20022 = 20022p + 10012(n — p), which is p = 1n. Thus,
equality occurs if and only if n is even and (a;, b;) = (1001, 2002) for half of
the subscripts ¢ while (a;, b;) = (2002, 1001) for the other half.

3. Letnbea positive integer. Determine the smallest possible sum

aiby +azbs + -+ 4+ azpy2bant2,

where a1, a2, ..., azn4+2 and by, ba, ..., ba, 2 are rearrangements of the
binomial coefficients

2n +1 2n +1 2n +1
0 ! 1 oottty 2n+ 1) -
Justify your answer.
Solved by Pierre Bornsztein, Maisons-Laffitte, France; and Pavlos

Maragoudakis, Pireas, Greece. We give Bornsztein’s solution.

According to the rearrangement inequality, the sum is minimized when
one of the sequences a1, az, ..., @an+2 and by, ba, ..., ban2 is increasing
and the other is decreasing. Since the binomial coefficients are increasing

£ 2n+1 2n+1 dd . f 2n + 1 2n+1
rom 0 to n+ 1 an €ecreasing irom n+ 1 to n + 1]

the minimal sum is
22":<2n+1>( 2n +1 > _ 2 <2n—|— >(2n+ >
= k n+1+k =

where the last step uses the well-known identity (7;1) ( )

Now consider a group of 2n + 1 boys and 2n + 1 1rls We want to
4an + 2
select n persons from this group. There are clearly ;— ways to do

that. On the other hand, letting £ be the number of boys in the selected
. n M2n+1 2n+1
group, we see that the total number of waysis also } k n—k |-

k=0
4an + 2)

Therefore, the minimal sum is 2( n
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4. Find all real-valued functions f : @ — R defined on the set of all
rational numbers @ satisfying the conditions

fl@+y) = f(@)+ fy) + 22y,
for all z, y in Q and f(1) = 2002. ]Justify your answers.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Maisons-
Laffitte, France; and Pavlos Maragoudakis, Pireas, Greece. We present
Bataille’s solution.

It is readily checked that the function » — »(r + 2001) is a solution.
We will show that it is unique. Let f be an arbitrary solution. Denote by C
the given condition f(z+vy) = f(z)+ f(y) +2zy, and fixz € Q, = > 0. Itis
easily proved that f(nz) = n(f(z) + (n — 1)22) for all n € N (by induction,
using C with x = nz and y = =z for the inductive step). Then, for alln € IV,

2002 = f(1) = f(nx%) = n(f(%)-i—(n—l)-%),

and thus, f (%) = % (2001 + %) Then, for all positive integers m and n,
() = f(mx3) = m(f(3)+m--55) = T (3 +2001).

Thus, f(r) = r(r + 2001) holds for all positive »r € @. Since f(0) = 0
(condition C with x = y = 0) and f(—r) = 2r% — f(r) (condition C with
x = r and y = —r), it can be verified that f(r) = »(r 4+ 2001) actually holds
for all » € Q. This completes the proof.

_—_—m NS —————

To finish this number of the Corner, we give solutions by our readers
to problems of the XVIII Italian Mathematical Olympiad, Cesenatico, Italy,
May 2002, given in [2005 : 217].

1. Find all 3-digit positive integers that are 34 times the sum of their digits.

Solved by Robert Bilinski, Collége Montmorency, Laval, QC; Pierre
Bornsztein, Maisons-Laffitte, France; Geoffrey A. Kandall, Hamden, CT, USA;
Pavlos Maragoudakis, Pireas, Greece; and Edward T.H. Wang, Wilfrid
Laurier University, Waterloo, ON. We give Bilinski’s write-up.

Let abce be a 3—digit positive integer with the required property (where
a, b, and c are the digits). Then 100a + 10b + ¢ = 34(a + b + ¢), which
simplifies to 22a = 8b + 11c. This equation implies that b is divisible by 11.
Since b is a digit, we must have b = 0, and then ¢ = 2a. This gives us the
numbers 102, 204, 306, and 408. It can be verified that each of these is a
solution.
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3. Let A and B be two points of the plane, and let M be the mid-point of
AB. Let r be aline, and let R and S be the projections of A and B onto r.
Assuming that A, M, and R are not collinear, prove that the circumcircle of
triangle AM R has the same radius as the circumcircle of BSM.

Solved by Michel Bataille, Rouen, France; and Pavlos Maragoudakis, Pireas,
Greece. We present Bataille’s solution.

A M B

Let M’ be the projection of M onto r. Then M’ is the mid-point of RS
(since M is the mid-point of AB) and MM’ 1 RS. It follows that ARM S
is isosceles with

RM = MS. (1)

Now, let p, and p; be the circumradii of AAMR and ABM S, respectively.

We have

RM SM
oo 2P = T oam - 2
sin(LZRAM) sin(£SBM)

But /RAM + /SBM = 180° (since AR || BS); hence,

2p, =

sin(ZRAM) = sin(4SBM). 3)
From (1), (2), and (3), we obtain p, = ps.

4. Find all values of n for which all solutions of the equation 3 —3z+n = 0
are integers.

Solved by Pierre Bornsztein, Maisons-Laffitte, France; and Pavlos
Maragoudakis, Pireas, Greece. We give Bornsztein’s solution.

If the given equation has an integer root «, then n = —a® + 3a is an
integer too. Therefore, the values of n that we seek must all be integers.

Let f(x) = 3 — 3z. The given equation is then f(z) = —n. Straight-
forward computations show that f is increasing on (—oo, —1] and [1, +o0),
and decreasing on [—1, 1]. Moreover, f(—1) = 2 and f(1) = —2. Thus, the
equation f(x) = —n has three real roots if and only if |n| < 2. Therefore,
n € {—2, —1, 0, 1, 2}. Furthermore, one of the integer solutions has to be
—1, 0, or 1; thus, n € {f(-1), f(0), f(1)} = {—2, 0, 2}. Direct checking
shows that the desired values are n = —2 and n = 2.
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5. Prove that, if m = 5™ 4 3™ + 1 is prime, then 12 divides n.

Solved by Pierre Bornsztein, Maisons-Laffitte, France; Gustavo KrimKker,
Universidad CAECE, Buenos Aires, Argentina; Pavlos Maragoudakis, Pireas,
Greece; and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON.
We give Krimker’s solution.

By the Division Algorithm, we have n = 12q + r for some integers
g and r such that 0 < r < 11. In the following three cases we will apply
Fermat’s Little Theorem and elementary congruence properties.

Case 1. ris odd; that is, »r = 2k + 1. Then

m = 5120t 4 3n 4 g = (52)%(52)* 541 = 541 = 0 (mod 3) .
Case2. r=2,7r =6, or r = 10; that is, »r = 4k + 2 with 0 < k£ < 2. Then
m = 5" 4312ak+2 1 = (34)%7(39)"32 11 = 3241 = 0 (mod 5) .
Case 3. r =4 orr = 8; thatisr = 4k with k = 1 or £k = 2. Then

m = 512q+4k+312q+4k+1 — (56)2q(54)k+(36)2q(34>k+1
2 4+ 48 4+1 = 0 (mod 7) .

Since m is prime and m > 9, none of the cases above are possible.
Thus, » = 0, and 12 divides n.

—_—— S ———

That completes this number of the Corner. This is a call for solutions—
readers will have noted that we are rapidly clearing our backlog and will
soon be in a position to publish solutions within a year of giving the con-
tests in Crux Mathematicorum. We need your contributions of nice solutions
and generalizations, preferably within 8 months of the appearance of the
problem.
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