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THE OLYMPIAD CORNER
No. 252
R.E. Woodrow

As a first problem set we give the 9™ and 10t grades of the Romanian
Mathematical Olympiad. My thanks go to Andy Liu, Canadian Team Leader
to the IMO in Japan, for collecting the set for our use.

ROMANIAN MATHEMATICAL OLYMPIAD
9t Grade

1. Find positive integers a and b such that, for every =, y € [a, b], we have
1,1

=4+ = € [a,b].

z oy

2. An integer n > 2 is called friendly if there exists a family A, A2, ..., A,
of subsets of the set {1, 2, ..., n} such that:

(i) 1 ¢ A; foreveryi € {1,2,...,n};

(ii) < € A; if and only if j ¢ A;, for every distinct 4, j € {1, 2, ..., n};
(iii) A; N A; is non-empty for every ¢, j € {1, 2, ..., n}.
Prove: (a) 7 is a friendly number, and (b) n is friendly if and only if n > 7.

3. Prove that the mid-points of the altitudes of a triangle are collinear if and
only if the triangle is right.

4 1et P be a plane. Prove that there exists no function f : P — P such
that for every convex quadrilateral ABC D, the points f(A), f(B), f(C),
f(D) are the vertices of a concave quadrilateral.

10 Grade

1. Let OABC be a tetrahedron such that 0A L OB L OC L OA, let r be
the radius of its inscribed sphere, and let H be the orthocentre of triangle
ABC. Prove that OH < r(v/3 +1).

2. The complex numbers z;, 22, ..., z5, have the same non-zero modulus,
5 5
and Y z; = Y 27 = 0. Prove that 24, 2, ..., 25 are the complex coordi-
i=1 =1

nates of the vertices of a regular pentagon.

3. Let a, b, c be the complex coordinates of the vertices A, B, C of a triangle.
It is known that |a| = |b| = |c| = 1 and that there exists o € (0, 5 ) such that
a+bcosa 4 csina = 0. Prove that 1 < [ABC] < 1£¥2 where [XY Z] is
the area of XY Z.
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4. A finite set A of complex numbers has the property that z € A implies
z™ € A for every positive integer n.
(a) Prove that > =z is an integer.
z€EA
(b) Prove that, for every integer k, there is a set A which fulfills the above

condition with }~ z = k.
zZEA

_—_—m NS —————

As a second set of problems we give the problems of the 16" Korean
Mathematical Olympiad, written in April, 2003. Thanks go to Andy Liu,
Canadian Team Leader, for collecting them for the Corner.

16" KOREAN MATHEMATICAL OLYMPIAD
April 12-13, 2003
Time: 9 hours

1. The computers in a computer lab are connected by cables as follows: Each
computer is directly connected to exactly three other computers via cables.
There is at most one cable joining two computers and any pair of computers
in the lab can exchange data. (Two computers A and B can exchange data
if there exists a sequence of computers starting from A and ending at B in
which two computers next to each other in the sequence are directly joined
by a cable.)

Let k be the smallest number of computers in the lab whose removal
results in leaving just one computer in the lab or a pair of computers not able
to exchange data any more. Let £ be the smallest number of cables whose
deletion results in the existence of two computers that cannot exchange data
any more. Show that k& = £.

2. Let ABCD be a rhombus with ZA < 90°. Let its two diagonals AC and
BD meet at a point M. A point O on the line segment M C is selected such
that O # M and OB < OC. The circle centred at O passing through points
B and D meets the line AB at point B and a point X (where X = B when
the line AB is tangent to the circle) and meets the line BC at point B and a
point Y. Let the lines DX and Dig Cr;eet the line segment AC at P and Q,

. . MA
respectively. Express the value of op 0 terms of ¢ when MO — t.

3. Show that there exist no integers z, y, z with = # 0 satisfying
224 —+ 2az2y2 + y4 = 22,

4. suppose that the incircle of AABC is tangent to the sides AB, BC, CA
at points P, Q, R, respectively. Prove the following inequality:
BC CA AB

Wi Wi S
PQ+QR+RP =
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5. Answer the following where m is a positive integer.
(a) Prove that if 211 4 1 divides 32™ + 1, then 2t! 4 1 is a prime.

(b) Is the converse of (a) true?

6. Let m and n be relatively prime positive integers satisfying 6 < 2m < n.
Consider n distinct points on a circle. Join one of these n points, say P, by a
line segment to the m'™" point Q counterclockwise from P, then join Q by a
line segment to the m™ point R counterclockwise from Q, and so on. Repeat
this process until no new line segment is added. Denote by I the number of
intersections among these line segments inside the circle (excluding those on
the circle).

(a) Find an expression for the maximum of I in terms of m and n when the
locations of the n points change.

(b) Show that the inequality I > n holds regardless of the locations of the
n points. Also show that n points can be located sothat I = nif m = 3
and n is even.

_—_— e~ S ——————

As a third set we give the X National Mathematical Olympiad of Turkey
written in December 2002. Thanks again go to Andy Liu for collecting the
problems for our use.

X NATIONAL MATHEMATICAL OLYMPIAD
OF TURKEY
Day 1 — 14 December 2002
(Time: 4.5 hours)

1. Letn > 2 be an integer, and let (a;,az,...,a,) be a permutation of
1,2,...,n. Foreach k € {1, 2, ..., n}, ax apples are placed at the point
k on the real axis. Children named A, B, C are assigned respective points
za, g, xc € {1, 2, ..., n}. Foreach k € {1, 2, ..., n}, the children
whose points are closest to k divide a; apples equally among themselves.
We call (za,xzp,xc) a stable configuration if no child’s total share can be
increased by assigning a new point to this child and not changing the points
of the other two. Determine the values of n for which a stable configuration

exists for some distribution (a;, as, ..., a,) of the apples.

2. Two circles are externally tangent to each other at a point A and internally
tangent to a third circle T at points B and C. Let D be the mid-point of the
secant of I" which is tangent to the smaller circles at A. Show that A is the
incentre of the triangle BC D if the centres of the circles are not collinear.
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3. Graph Airlines (GA) operates flights between some of the cities of the
Republic of Graphia. There are GA flights between each city and at least
three different cities, and it is possible to travel from any city to any other
city in the Republic of Graphia using GA flights. GA decides to discontinue
some of its flights. Show that this can be done in such a way that it is still
possible to travel from any city to any other city using GA flights, yet at least
2/9 of the cities have only one flight.

Day 2 — 15 December 2002
(Time: 4.5 hours)

4. Find all prime numbers p for which the number of ordered pairs of integers
(z,y) with 0 < z, y < p satisfying the condition y? = z3 — = (mod p) is
exactly p.

5. In an acute triangle ABC with |[BC| < |AC| < |AB|, the points D on
side AB and E on side AC satisfy the condition |BD| = |BC| = |CE|.
Show that the circumradius of the triangle ADE is equal to the distance
between the incentre and the circumcentre of the triangle ABC.

6. Let n be a positive integer and R™ be the set of ordered n—tuples of real
numbers. Let T denote the collection of (z1,x2,...,2,) € R™ for which
there exists a permutation o of 1, 2, ..., n such that z, ;) — x5 (;41) > 1 for
eachi € {1, 2, ..., n — 1}. Prove that there is a real number d satisfying
the following condition:

For every (a;,as,...,a,) € R™, there exist (by,bz,...,b,) € T and
(c1,€25...,¢,) € T such that, for eachi € {1, 2, ..., n},

a; — %(bz-l-cz), |ai—b,-| S d, and |a,-—c1-| S d.

—_— N r———

Now we turn to the solutions on file for problems of the 2000 Kiirschak
Contest given in [2004 : 205].

1. Fora positive integer n, consider the square in the Cartesian plane whose
vertices are A(0,0), B(n,0), C(n,n) and D(0,n). The grid points of the
integer lattice inside or on the boundary of this square are coloured either
red or green in such a way that every unit square in the lattice has exactly
two red vertices. How many such colourings are possible?

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Colourings which satisfy the given condition will be called “good”. We
will prove that the number of good colourings is 2712 — 2.
For n = 1, the number of good colourings is (3) = 6 = 2"+2 — 2.
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Now consider n > 2. Let cg, ¢1, ..., ¢, be the columns of the
(n +1) X (n + 1) grid described in the problem, and let rg, 71, ..., 7,
be the rows. Note that in any good colouring, the lower-left unit square
contains exactly two red vertices.

Let us form a good colouring. Suppose we colour red the points with
coordinates (0, 0) and (1,0). The colouring of the two columns c¢o and ¢; is
then completely determined. We have two ways to colour the column co,
depending on which of the points (2,0) and (2, 1) we choose to colour red.
(Either choice determines the colouring of the whole column ¢, since the
colouring of c; is already determined). We use the same reasoning for the
other columns, so that we obtain exactly 27~ good colourings in this case.

The same reasoning (with perhaps consideration of the rows instead of
the columns) leads to the same number in each of the three other cases for
which we colour red two adjacent lattice points in the lower-left unit square.

Now, let a,, be the number of good colourings of the (n +1) x (n+ 1)
grid for which the two red vertices in the lower-left unit square are (0, 0) and
(1,1). Let us consider such a good colouring.

(a) If we colour red the point (2,1), then we have two adjacent red
vertices at (1,1) and (2,1). A good colouring of the whole grid leads to a
good colouring of the n x n grid obtained by deleting ¢y and r¢, and in this
n X n grid, the lower-left unit square has two adjacent red vertices (namely
(1,1) and (2, 1) in the ‘old’ numbering). As seen above, there are 2"~2 good
colourings for this n x n grid. Each of them determines the colouring of rq
(because the point (2, 1) is already red) and cq (because (1, 3) is already red)
so as to obtain a good colouring of the original (n 4+ 1) x (n + 1) grid.

(b) 1f we colour red the point (1, 2), the same reasoning as in (a) leads
to 2”2 good colourings again.

(c) Otherwise, we colour red the point (2,2). This leads to a good
colouring of the n x n grid obtained by deleting cg and r¢, where the red
points of the lower-left unit square are (0,0) and (1,1) (in the ‘new’
numbering). There are a,,_; such good colourings. Each of these determines
the colouring of ro and ¢g. It follows that a,, = 2 x 22 4+ a,,_;. Since
a; = 1, we easily deduce that a,, = 2™ — 1.

Similarly, there are 2™ — 1 good colourings of the (n+1) x (n+1) grid
for which the red vertices in the lower-left unit square are (1,0) and (0, 1).

The total number of good colourings is 4-2"~1 +2(2" —1) = 271+2 -2,

2. LetT hea point in the plane of the non-equilateral triangle A BC which
is different from the vertices of the triangle. Let the lines AT, BT, and CT
meet the circumcircle of the triangle at A7, B, and Cr, respectively. Prove
that there are exactly two points P and Q in the plane for which the triangles
ApBpCp and AgBgCq are equilateral. Prove, furthermore, that the line
PQ passes through the circumcentre of the triangle ABC.
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Solution by Michel Bataille, Rouen, France.

We embed the figure in the complex plane and, for simplicity, denote
a point or its complex representation by the same small letter. Without loss
of generality, we suppose that a, b, and c lie on the unit circle T, so that
aa = bb = c¢ = 1. Note that the points p and q we seek cannot lie on T

Let a’ € T'and m ¢ I'. The line aa’ passes through m if and only if

m + aa’m = a + a’; that is, a’ = T,(a), where T,,, denotes the Mdbius

transformation defined by T}, (z) = 1m__mzz . As aresult, fora’, b, ¢’ on T,

the lines aa’, bb’ and cc’ concur at m if and only if @’ = T,,,(a), ¥’ = T, (b)
and ¢/’ = T,,,(c).
The statement that a’b’c’ is equilateral is successively equivalent to

* Z,__z € {—w, —w?}, where w = exp(27i/3),
o [T,,(m), Trn(a), Trn(b), Tm(c)] € {—w, —w?}, where [-,-,-, -] denotes

the cross ratio,

o [T,,(m), Trn(a), Trn(b), Tm(c)] € {—w, —w?} (since —w and —w? are
conjugates),

e [m,a,b,c] € {—w, —w?} (since T,, preserves the cross ratio).

The conclusion follows, since p and g are the two points given by
[p,a,b,c] = —w, [q,a,b,c] = —w?. Note that p, q # oo since ABC is
not equilateral. Also, from [q, a, b, ¢] = [p, a, b, ], an easy calculation yields
qg = 1/p. Thus, 0, p, and q are collinear (p and q are even inverses in T').

Notes.

1. P and Q are called the isodynamic points of AABC. Various
properties of these points can be found in R.A. Johnson, Advanced Euclidean
Geometry, Dover, 1960, pp. 295-7.

2. A nice reference for the use of complex numbers, cross ratios, and
Mobius transformations is L. Hahn, Complex Numbers and Geometry,
Mathematical Association of America, 1994.

3. For a slightly different solution of the problem, see American
Mathematical Monthly, 109, December 2002, pp. 926-7.

3. Let k denote a non-negative integer. Assume that the integers a4, ..., a,
give at least 2k different remainders when divided by n+ k. Prove that some
of the integers add up to a number divisible by n + k.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

It is well known that among any n integers we may find some which
add up to a number divisible by . Thus, we will assume that k& is positive.
In this case, we will prove a stronger version of the problem: If the integers
ai, ..., a, give at least k + 1 different remainders when divided by n + k,
then some of them add up to a number divisible by n + k.
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First assume that & > 1. Without loss of generality, we suppose that
ai, ..., gy are distinct modulon + k. Let S = a1 + -+ + ap+1-
Now, we consider the three following groups:

o Typel:aq, ..., ap41-
° Type II:S—al, cee, S—ak+1.
o Typelll: S, S + ax42, S+ axt2 + arys, ..., S+ art2+ -+ an.

There are (k + 1) + (k+ 1) + (n — k) = n 4+ k 4+ 2 numbers listed
in the three groups above. Obviously, if one of these numbers is divisible by
n + k we are done. Otherwise, by the Pigeonhole Principle, at least two, say
x and y, have the same remainder modulo n + k.

Since aq, ..., ag4+1 are distinct modulo n + k, it follows that  and y
cannot be both of type I nor both of type II. Clearly, if at least one of = and y
has type 111, we have the desired conclusion (by considering y — = or = — y).
Therefore, without loss of generality, we may assume that « = a, belongs
to Type I and y = S — a, belongs to Type II.

If p # q, then y — x leads to the desired conclusion (since k + 1 > 2,
we are sure that y — x is a non-empty sum). If p = g, then we actually have
three such pairs, say (a1, S — a1), (a2, S — az2), (a3, S — a3). (Remember
that we have n 4+ k 4+ 2 numbers in the list for only n + k£ — 1 possible
remainders and that, according to the previous cases, we may assume that
no three numbers have the same remainder modulo n + k. Therefore, at
most two pairs would lead to at least n + k distinct remainders.) It follows
that 2a; = 2a; = 2a3 = S (mod n + k).

Since a4, a2, ag are distinct modulo n 4+ k, we deduce that n+ k is even
and a; = az = t(n+k)/2and a; = az+r(n+k)/2 for some odd integers ¢
and r. Thus, a; = a3 (mod n + k), a contradiction. The conclusion follows.

Now, let us consider the case k = 1. If the integers give at least three
distinct remainders modulo n + 1, the proof above can be adapted word for
word, since the proof used only the fact that S is a sum of at least three
terms. Thus, we only have to consider the case where the given integers give
two remainders modulo n + 1.

Let us assume that, for some positive integer p, we have

a; = = ap = r (mod n+1)
and apy1 = =a, = s (modn+1),
withr # s (mod n+1). lf ir = 0 (mod n+ 1) forsome: =1, ..., p,
we are done. Otherwise, it follows that », 2r, ..., pr are distinct modulo
n + 1. We may assume that js # —is (mod n+ 1) foralli =1, ..., pand
allj =1, ..., n — p (otherwise we are done). Then, there are only n — p
available remainders for the n — p numbers s, 2s, ..., (n — p)s, and one

of them is 0. Thus, either one of these numbers is divisible by n + 1 or at
least two have the same remainder modulo n + 1. In both cases, there exists
j €41, 2, ..., np}suchthat js = 0 (mod n + 1), and we are done.
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Now we move to the September 2004 number of the Corner and
readers’ solutions to some of the problems of the 11t" Japanese Mathematical
Olympiad, Second Round, given in [2004 : 266-267].

1. An m x n chessboard is given. Each square is painted black or white in
such a way that for every black square, the number of black squares adjacent
to it is odd. Prove that the number of black squares is even. (Two squares
are adjacent if they are different and have a common edge.)

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Consider the graph whose vertices are the black squares, any two joined
by an edge if and only if they are adjacent. From the problem statement, each
vertex has odd degree. But it is well known that in any finite simple graph
the number of vertices with odd degree is even (this follows from the fact
that the sum of the degrees is twice the number of edges). Thus, the number
of vertices is even, and we are done.

2. A positive integer n is written in decimal notation as a,,@,,_1 - az;
that is,
n = 10m ta,, +10™ 2a,,,_1 + -+ aq,

where a.,,, am—1, ..., a1 € {0, 1, ..., 9} and a,, # 0. Find all n such that

n = (am+1) X (@m-1+1)X--+X (a1 +1).
Solved by Houda Anoun, Bordeaux, France; and Pierre Bornsztein, Maisons-
Laffitte, France. We give the solution by Anoun (en francais).

Soit n un entier dont la notation décimale est sous la forme de
QA1 - -+ a1 qui satisfait la condition

n = (am+1) X (@m-1+1) XX (a1 +1). @
Supposons qu'il existe j € {1,..., m}telquea; = 0. Onaa;+1 < 10
pour touti € {1, ..., m}. Sia; = 0, il s’en suit que

(@m +1) X (@m—1+1) X -+ X (a1 +1) < 10m™~ L.

C’est a dire que n < 10™~ 1. Puisque a,, # 0, on déduit que a,, = 1 et

a; =0pouri € {1,...,m—1}. D’aprés(1)onaaussin =2x1---x1=2.
Ceci est absurde. On conclut que a; # 0 pour tout ¢ € {1, ..., m}.

Maintenant supposons qu’il existe j € {1, ..., m} tel que a; = 9.
Donc a; + 1 = 10 est un diviseur de n (par (1)). D’ot a; = 0, chose qui
est contradictoire avec le résultat précédent. On déduit que a; € {1, ..., 8}
pour touts € {1, ..., m}.

Puis on montre par récurrence que si n > 3, donc

(am +1) X (@m—1+1) X--- X (a1 +1)
< 10™'am, + 10" a1+ -+ az. (2
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On considére d’abord le cas m = 3. Ona (az+1) X (a;1+1) < 10az+a;,
car cette inégalité est équivalent 2 (9 — a1) X a2 > 1, qui est vrai. Or

(a3+1) X (a2+1) X (a1—|—1) < (03+1) X (10&2+(11)

(10(12 + al) X ag + 10az + a1
10%a3 + 10az + a; .

A

Ceci vérifie (2) pour m = 3.
Puis supposons que (2) est appliqué pour m =k, ou k € {3, 4, ..., }.
On a alors

(k41 +1) X (@ +1) X +++ X (@ + 1)
< (apt1+1) x (10 1a, + 10 2a,_1 + -+ + a1)
= (10k_1ak + 10k_2ak—1 + -+ al) X Q41
+10*'a, + 10 2a,_1 + -+ + ay
< 10%apiq +10*tap + -4 as .

La preuve par récurrence est compléte.

Si n vérifie la condition (1), alors il n’est pas composé au plus de deux
chiffres. 1l ne peut étre composé d'un seul chiffre a;, car sinon on aura
a; = a; + 1. Cherchons finalement les entiers n de la forme 10as + a;
tels que n = (a2 + 1) X (a1 + 1). On a alors:

10az + a1 = (CL2+1)X((11+1).

D’ol (9 — a1) X a2 = 1, ceci implique que a; = 8 etas = 1.
L’'unique solution au probléme est donc I’entier 18.

3. Three real numbers a, b, ¢ > 0 satisfy
a? < b+ 2, b? < %+ d?, 2 < a?+4b%.
Prove the inequality
(a+b+c)a®+b%>+c?)(a®+b3+c®) > 4(a® +b° + 5).
When does equality hold?

Solved by Pierre Bornsztein, Maisons-Laffitte, France; Vedula N. Murty,
Dover, PA, USA; and Li Zhou, Polk Community College, Winter Haven, FL,
USA. We use Zhou'’s presentation.

By the Cauchy-Schwarz Inequality, we have
(a+b+c)(a3+b3+c3) > (a2+b2+c2)2.
Thus,

(a+b+c)a®+b>+c*)(a®+b2+c3) > (a® +b%+?)3.
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Therefore, it will suffice to prove that
(a®> + b2 + )3 > 4(a® +b° + c°).
We have

(a2 + 6% + c2)3 = (a6 + 5% + cG) + 6(abc)2
+ 3((12b4 + b%c* + c2a? + a*b? + b2 + c4a2)
= 4(a® + b% + %) + 12(abc)?
+3(a? + b% — ) (b + 2 — a?)(c® + a® — b?)
> 4(a® +b% 4+ c%),

since a? < b2 + 2, b? < c? 4+ a?, and 2 < a? + b2. Equality holds if and
only if one of a, b, cis 0 and the other two are equal.

4 et pbe a prime number and m a positive integer. Show that there exists
a positive integer n such that the decimal representation of p™ contains a
string of m consecutive Os.

Solutiond by Pierre Bornsztein, Maisons-Laffitte, France.

Casel. p ¢ {2, 5}.

Then p is coprime to 10™11. Hence, by the Euler-Fermat Theorem,
there exists m >0 such that p” =1 (mod 10™*') (for example,
n = ¢(10m*1)). It follows that the decimal expansion of p™ has the form
q0...01, where g is the decimal expansion of some positive integer g and
there are m consecutive 0s between g and 1.

Case 2. p = 2.

As above, there exists a > 0 such that 2* =1 (mod 52™). It follows
that 22+2™ — 22™ = 0 (mod 10?™). Thus, 2%+2™ — 22™ contains a string
of 2m consecutive 0s.

But, since 22™ = 4™ < 10™, the decimal expansion of 22™ does not
use more than m digits. It follows that the decimal expansion of 22+2™
contains a string of m consecutive 0s, as desired.

Case 3. p = 5.

As above, there exists a > 0 such that 5% = 1 (mod 2*™). It follows
that 52+4™ — 54™ = 0 (mod 10*™). Thus, 5°t4™ — 5%™ contains a string
of 4m consecutive 0s.

But, since 5™ < 103™, the decimal expansion of 54™ does not use
more than 3m digits. It follows that the decimal expansion of 5214™ contains
a string of m consecutive Os, as desired.

—_—_— N~ S ———————
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Next we turn to readers’ solutions to problems of the 14" Mexican
Mathematical Olympiad given in [2004 : 267-268 .

1. Let A, B, C, and D be circles such that (i) A and B are externally tangent
at P, (ii) B and C are externally tangent at Q, (iii) C and D are externally
tangent at R, and (iv) D and A are externally tangent at S. Assume that A
and C do not intersect and that B and D do not intersect.

(a) Prove that P, Q, R, and S lie on a circle.

(b) Assume further that A and C have radius 2, B and D have radius 3, and
the distance between the centres of A and C is 6. Determine the area of
PQRS.

Solution by Geoffrey A. Kandall, Hamden, CT, USA.
(@) A

Y

(o

Draw the common internal tangents at P, Q, R, and S, and label angles
a, 3, v, and é as shown in the diagram above. Since the sum of the internal
angles in quadrilateral PQRS is 360°, it follows that « + 3+~ + § = 180°.
Hence, opposite angles of PQRS are supplementary. Thus, PQRS is cyclic.

(b) Let A/, B’, C’, D’ be the centres of the
circles A, B, C, D, and let A’C’ and B’ D’ meet 9 A’ 9
at E. Since A’ B’C’D’ is arhombus, the diagonals S P
A’C’” and B’D’are the perpendicular bisectors of
one another. Then, since the distance between A’ D’ B’
and C’ is 6, we have A’E = 3. Hence, D'E = 4 3 3
and D’B’ = 8. Since SP || D’B’ || RQ and R Q
SR | A’C’ || PQ, it follows that PQRS is a 252
rectangle.
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We have
SP 2 SR 3
= — and = —.
D'B’ 5 AC’ 5
Therefore, SP = 2. 8 = 16 and SR = 3. 6 = E. Finally,
5 5 5 5
[PQRS] = SP-SR = % .

2. A triangle like the one shown is constructed with
; 1 2 3 4 5
the numbers from 1 to 2000 in the first row. Each 3 5 7 9

number in the triangle, except those in the first row, 8 12 16
is the sum of the two numbers above it. What number 20 28
occupies the lowest vertex of the triangle? (Write your 48

final answer as a product of primes.)

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

Let p be the number of integers written on the first row. Let a,, be the
first number (on the left) appearing on the nt" row. An easy induction shows
that the n'" row is

an, an,+2"71 a,+2-2771 ... a,+ (p—n)2"L

It follows immediately that a,,+1 = 2a,, + 2"~1. Since a; = 1, we deduce
that a,, = (n + 1)2"~2. The problem asks for asg0o. We have

azo00 = 2001 x 21998 — 21998 3 % 23 x 29.

3. Given a set A of positive integers, a set A’ is constructed consisting of all
elements of A as well as all positive integers that can be obtained as follows:
some elements of A are chosen, without repetition, and for each of them a
sign (4+ or —) is chosen; the signed numbers are then added and the result
is placed in A’. For example, if A = {2, 8, 13, 20}, then two elements of
A’ are 8 and 14 (since 8 belongs to A and 14 = 20 + 2 — 8). From A’, a set
A" is constructed in the same fashion as A’ is constructed from A. What is
the minimum number of elements that A must have if A” is to contain all
integers from 1 to 40 (including 1 and 40)?

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

The minimum is 3 and it is achieved for A = {1, 5, 25} (for example).
Indeed, in that case, A’ = {1, 4, 5, 6, 19, 20, 21, 24, 25, 26, 29, 30, 31}.
From that, it is routine to verify that {1, 2, ..., 40} C A”.

Now, let0 < z < yand A = {«, y}. Thus, A’ = {z,y — =, y, y + x}
(there may be some repetitions). Note that if we select ¥ > 1 elements from
A’, we may construct 2¢ sums from them, not necessary positive. More
precisely, it is clear that if we may obtain the sum s from these k elements,
then we may also obtain —s by reversing all the signs.
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Since |A’| < 4, we deduce that we can construct at most

o (&) 4 (2) v (&) #10x (2) = 50

sums, not necessarily positive or distinct. From above, we see that there are
at most 40 positive sums. But these sums are not pairwise distinct, since =
can be obtained from {z} and from {y + x, y}. Thus, there are fewer than
40 positive sums, so that we cannot obtain all the integers from 1 to 40.

It follows that 3 cannot be improved.

5. An n x n square is divided into unit squares and painted black and white
in a checkerboard pattern. The following operation may be performed on the
board: choose a sub-rectangle whose side lengths are both odd or both even,
but not both 1, and reverse the colours of the unit squares in this rectangle
(that is, black squares become white and white squares become black).

Find all values of n for which it is possible to make all unit squares the
same colour by a finite sequence of operations.

Solution by Pierre Bornsztein, Maisons-Laffitte, France.

We will prove that this is possible for all positive n except n = 2.

There is nothing to do for n = 1. It is impossible for n = 2, since the
only subrectangle available is the whole square itself, which does not lead to
the desired colouring.

Assume first that n > 3 is odd. By choosing 1 x n rectangles
corresponding to the columns ¢y, cg, ..., ¢, (from left to right), each of the
rows of the whole square becomes monochromatic. = Next, choosing
appropriate rows as subrectangles leads to a monochromatic whole square.
It follows that each odd n > 3 is a solution of the problem.

Now suppose that n is even. Let n = 2%b, where a > 1 and b > 3,
with b odd. By dividing the n X n square into 22¢ subsquares of size b x b,
we may use the result above to give the same colour, say black, to all these
subsquares. This leads to a monochromatic n x n square. Thus, n is a
solution.

Following the same reasoning, we may prove that if n = 4 is a solution,
then n = 2¢ is also a solution for all @ > 2. Therefore, it only remains to
prove that n = 4 is a solution.

But the following sequence of 6 operations does the job, where we have
used dotted lines to mark the rectangles involved at each stage:

¥ R TE e
LN
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6. Let ABC be a triangle with /B > 90° such that, for some point H on
AC,we have AH = BH, and BH is perpendicular to BC. Let D and E be
the mid-points of AB and BC, respectively. Through H a parallel to AB is
drawn, intersecting DFE at F. Prove that /BCF = ZACD.

Solved by Michel Bataille, Rouen, France; and Toshio Seimiya, Kawasaki,
Japan. We give Seimiya’s treatment.

Since D and E are the mid-points of AB and BC, respectively, we
have DE || AC. Let M be the mid-point of AC; then DM || BC. These
imply that

/BED = /BCA = /DMA. (1)

Since DF || AH and HF || AD, quadrilateral DAHF is a parallelogram.
Thus, HF = AD = DB; hence, quadrilateral BDHF is a parallelogram,
and we have BF || DH. Since AH = BH and AD = BD, we get
HD 1 AB. Thus, /ZDBF = ZADH = 90°.

Since /ZHBE = 90°, we have /DBF = /HBE; that is,

/DBH + /HBF = /HBF + /FBE.

Thus, /DBH = /FBE. Since AH = BH, we have /DAH = /DBH,
and hence,
/FBE = /DAH . (2)

It follows from (1) and (2) that AFBE ~ ADAM. Thus,
EF:DM = BE: AM = EC:MC. (3)

Since /FEC = 180° — /BEF = 180° — /DM A = /DMC, it follows (in
view of (3)) that AFEC ~ ADMC. Hence, /ZECF = /MCD:; that is,
/BCF = LZACD.

_—_—m NS —————

That completes the Corner for this issue. This is now Olympiad
Season. Send me your Olympiad materials, as well as your nice solutions
and generalizations to problems featured in the Corner.
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