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Calgary, Alberta, Canada, T2N 1N4.

Last number we gave ten problems from the shortlist for the 2000 Inter-
national Mathematical Olympiad. We start this number with the remaining
11 problems of the shortlist. My thanks go to Andy Liu, Canadian Team
Leader to the IMO in Seoul, for collecting them.

2000 INTERNATIONAL MATHEMATICAL
OLYMPIAD
Shortlisted Problems

11. (Argentina) Let ABCD be a convex quadrilateral with AB not
parallel to CD, and let Y be the point of intersection of the perpendic-
ular bisectors of AB and CD. If X is a point inside ABCD such that
/ADX = /BCX < 90° and /ZDAX = ZCBX < 90°, prove that
/AYB =2/ADX.

12. (Belarus) Find all pairs of functions f and g from the set of real
numbers to itself such that f(x + g(y)) = = f(y) — yf(x) + g(x) for all real
numbers x and y.

13. (India) Let O be the circumcentre and H the orthocentre of an
acute triangle ABC'. Prove that there exist points D, F, and F on sides BC,
CA, and AB, respectively, suchthat OD+ DH = OE+ EH = OF +FH
and the lines AD, BE, and CF are concurrent.

14. (Iran) Ten gangsters are standing on a flat surface. The distances
between them are all distinct. Simultaneously each of them shoots at the
one among the other nine who is the nearest. At least how many gangsters
will be shot at?

15. (Ireland) A non-empty set A of real numbers is called a Bs—set if
the conditions ai, as, as, ay, as, ag € A and a1 +ag + az = a4q + as + ag
imply that the sequences (a1, az2,a3) and (a4, as,ag) are identical up to a
permutation. For a set X of real numbers, let D(X) denote the difference
set {|r —y|:x,y € X}. Provethatif A= {0 =ap < a1 <az <---}and
B = {0 =bg < by < bz < ---} are infinite sequences of real numbers with
D(A) = D(B), and if A is a Bs—set, then A = B.
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16. (The Netherlands) In the plane we are given two circles intersect-
ing at X and Y. Prove that there exist four points such that for every circle
touching the two given circles at A and B, and meeting the line XY at C
and D, each of the lines AC, AD, BC, and BD passes through one of those
four points.

17. (Russia) For a polynomial P with distinct real coefficients, let
M (P) be the set of all polynomials that can be obtained from P by permuting
its coefficients. Find all integers n for which there exists a polynomial P of
degree 2000 with distinct real coefficients such that P(n) = 0 and we can get
from any Q € M (P) a polynomial Q’ such that Q’(n) = 0 by interchanging
at most one pair of coefficients of Q.

18. (Russia) Let A;A,...A, be a convex polygon, n > 4. Prove
that A; A, ... A, is cyclic if and only if each vertex A; can be assigned a
pair (b;, ¢;) of real numbers so that A;A; = bjc; — b;c; for all ¢ and j with
1<i<j<n.

19. (United Kingdom) Let a, b, and ¢ be positive integers such that
¢ > 2b > 4a. Prove that there exists a real number X such that the three
1 2

numbers Aa, Ab, and Ac all have their fractional parts in the interval (g, g].

20. (United Kingdom) A function F is defined from the set of non-
negative integers to itself such that, for every non-negative integer n,
F(4n) = F(@2n) + F(n), F4n + 2) = F(4n) + 1, and
F(2n + 1) = F(2n) + 1. Prove that, for each positive integer m, the
number of integers n with 0 < n < 2™ and F(4n) = F(3n) is F(2™11).

21. (United Kingdom) The tangents at B and A to the circumcircle of
an acute triangle ABC meet the tangent at C at T and U, respectively. The
lines AT and BC meet at P, and Q is the mid-point of AP; the lines BU
and C A meet at R, and S is the mid-point of BR.

(a) Prove that LZABQ = /BAS.

(b) Determine, in terms of ratios of side lengths, the triangles for which this
angle is a maximum.

—_— N r———

Next we turn to solutions by our readers to problems of the Vietnamese
Mathematical Competition 1997 [2001 : 167].

1. ma plane, let there be given a circle with centre O, with radius R
and a point P inside the circle, OP = d < R. Among all convex quadrilater-
als ABCD, inscribed in the circle such that their diagonals AC and BD cut
each other orthogonally at P, determine the ones which have the greatest
perimeter and the ones which have the smallest perimeter. Calculate these
perimeters in terms of R and d.
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Solved by Mohammed Aassila, Strasbourg, France; and Christopher
J. Bradley, Clifton College, Bristol, UK. We give Aassila’s solution, adapted
by the editors.

Let ABCD be a quadrilateral satisfying the given conditions, and let p
denote its perimeter. Then

p> = (AB+ BC + CD + DA)?
= AB?+4+CD?+ BC?+ DA? +2(AB-CD + AD - BO)
+2(AB-AD+CB-CD)+2(BA-BC + DA-DC).

Now
AB? + CD? = BC? + DA? = 4R?. €))

Ptolemy’s Theorem gives us
AB-CD+ AD-BC = AC:-BD.

Also, with some work one obtains AC? + BD? = 8R? — 4d?. Hence,

2AC -BD = (AC + BD)? — 8R? 4 4d>. )
Thus,
2(AB-CD + AD - BC) = (AC + BD)? — 8R? + 4d>. (3)
Furthermore,
2(AB-AD +CB-CD) = 4R AC, (4)
and
2(BA-BC + DA-DC) = 4R-BD. (5)

Using (1), (3), (4), and (5) in our expression for p?, we get
p?> = (AC + BD)? + 4R(AC + BD) + 4d?.

Consequently, the maximum (respectively, minimum) of p corresponds to
the maximum (respectively, minimum) of AC + BD, which, in view of (2),
corresponds to the maximum (respectively, minimum) of AC - BD. Noting
that
2AC - BD = 8R? — 4d*® — (AC — BD)?,

we conclude that the maximum (respectively, minimum) of p corresponds
to the minimum (respectively, maximum) of |AC — BD)|. It follows that p
is maximized when AC = BD, and p is minimized when AC = 2R and
BD = 2+/R? — d? (the maximum and minimum possible lengths for a chord
through P). Hence,

p2.. = 16R?® —4d? 4+ 8R\/4R2 — 242,

and

p2,, = 16R?> +16R\/R? —d?.
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Editor’s note: We can then obtain the following expressions for p,,.x
and pmin:

Pmax = 2(\/§R+\/W) = <\/\/§R—d+\/\/§R+d)2,
Pmin = 2@(\/R+d+\/R—d).

2. Let there be given a whole number n > 1, not divisible by 1997.
Consider two sequences of numbers {a;} and {b;} defined by:

ni

a; = 1
‘ + 1997

(i =1,23,...,1996),

19975

b; = j+ (g =1,2,8,...,n—1).

By arranging the numbers of these two sequences in increasing order, we get
the sequence ¢; < c2 < -+ < €19954n-
Prove that ¢x41 —cx < 2foreveryk =1, 2,...,1994 4+ n.

Solved by Mohammed Aassila, Strasbourg, France; and Pierre
Bornsztein, Pontoise, France. We give the solution of Bornsztein.
First note that {a;} and {b; } are two increasing arithmetical sequences,

. . n 1997 .
with difference o = 1 + To97 and 3 =1+ - respectively.
Let: € {1, ...,1996} and j € {1, ..., n — 1}, and suppose that

a; = b;. Then ni = 1997;. Since 1997 is prime and n Z 0 (mod 1997),
we deduce that ged(n,1997) = 1. From Gauss’s Theorem, we then have
¢t = 0 (mod 1997), which is impossible. It follows that a; # b;.

First Case. n < 1997.
We easily see that

a <2< 3, (1)
and a; < b1 ) (2)
which implies that ¢; = a;. Moreover, 21226 — 1996 - 1 Then
" bp_1  1997(n — 1) ’
bn_1 < aiogs, (3)
which lmplles that C1995+4+n = A1996-
Lemma. For every j € {1, ..., n — 2}, there exists ¢ € {1, ..., 1996} such

that bj <a; <bjy1.

Proof.  Suppose, for the purpose of contradiction, that there exists
j € {1, ..., n — 2} such that the interval [b;, b;11] does not contain any
of the a;’s. Let p be the greatest index such that a,, < b; (such a p does
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exist, since a; < by < bj;). Then p < 1996 (since b; < b,_1 < a1996), and
ap < bj; <bj;1 <apyr. It follows that o = api1 —ap > bjy1 —b; = 0,
which contradicts (1). Thus, the lemma is proved.

It follows from the lemma that, for every k € {1, ..., 1994 + n}, we
are in one of the three following cases:

(@) ck = a; and cg41 = a;41 for some i. Then cpy1 — cp = a < 2.

(b) cx = a;and cx41 = bj forsome i < 1996 (from (3)) and some j < n—1.
Then bj < ait1 and Crt1 —Ce < Qip1 —a; = < 2.

(¢) e¢x = bj and ¢x+1 = a; for some ¢ > 1 (from (2)) and some j < n — 1.
Thena; 1 < b; and Cry1—C < Q; —a;_1 =a < 2.

In each case, we have ¢ 1 — ¢ < 2, as desired.
Second Case. n > 1997.

This case is essentially the same as the first case: simply interchange n
with 1997 and a with b (and also o with 3).

3. How many functions f : N* — IN* are there that simultaneously
satisfy the two following conditions:

@ r1) =1,
(i) f(n) - F(n+2) = (F(n+ 1)) + 1997 for all n € N*?
(IN* denotes the set of all positive integers.)

Solved by Mohammed Aassila, Strasbourg, France; Christopher ]J.
Bradley, Clifton College, Bristol, UK; and Athanasias Kalakos, Athens,
Greece. We give the solution and comments of Kalakos.

This is, essentially, one of the problems of the 3" Balkan Mathematical
Olympiad (1986). It was proposed by Bulgaria. Here we give it as a lemma
with the same proof (slightly modified by the editors) that was given after
the competition by the teams that had participated.

Lemma. A sequence is defined by a; = a, az = b, and

a? +c
an+2=L, n:1,2,...,
(¢27)
where a, b, ¢ are real numbers and ¢ > 0. Then all a,, (n > 1) are integers
a?+b2+c¢
ab
Proof: 1f a = 0, then as is not defined. Thus, a # 0. Similarly, if b = 0,
then a4 is not defined. Thus, b # 0. It follows inductively that a,, # 0, for
all n > 1. More precisely, every term exists and is non-zero.

if and only if a, b, and are integers.

By the recurrence we find, for all n > 2,

2 _ _ 2
An420n — an+1 = C = Qn410n—-1 —a,,
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and hence,
Qpn 42 + Qn _ An41 + Ap—1

Qpn41 Qn

Therefore, for all n > 1, we have

b2
Gnizt+an  az+a;  TFX4a  a?+b2+c
Qi1 as b ab '
and hence,
a2 +b%2+c
Aptz = —————— " Qpt1 — Qn -

ab

lfa b & T0 +c
’ ’ ab
integer for all n > 1.

are integers, then an easy induction shows that a,, is an

Conversely, assume that a,, € Z, for alln > 1. Then ay, a; € Z
implies that @, b € Z. Moreover, we have ¢ € Z, since ¢ = aasz — b>.
a’ b tc is rational. Write a’ b te

ab ab
g € N* and ged(p,q) = 1. For s € IN*, we will prove inductively on s the
following proposition P(s): ¢° | a,,, forallm > s+ 1.

Therefore, = g, where p € Z,

For all K > 1, the recurrence api2 = L art+1 — ap gives
q

paqﬁ = agy2 + ai, and hence, ¢ | (pagr+1). Since ged(p,q) = 1, it
follows that q | ax+1. Thus, q | a,, for all n > 2, and P(1) is true.

Suppose that P(s) holds for some s > 1. Theng® | a,, foralln > s+1.
Consider any k > s + 1. Since ag42 = gakﬂ — ag, we have

Qp42 +Qr POkl
qs - qs+1

By the induction hypothesis, ¢° | ar and ¢® | ak2; hence, ¢° | (ak+2 + ax).
Therefore, g*t! | (pag+1). Since ged(p, ¢°T1) = 1, we obtain ¢**?! | ag1.
Thus, ¢**! | a,, for all n > s + 2. This proves P(s + 1) and completes the
induction.

Now let s > 1 be arbitrary. We have ¢ = any2a, — a2 For

n+1-°
n = s + 1, this yields ¢ = asy3as41 — a§+2. Using P(s),

@ last1, q° a3, ¢°|lasps == ¢* | (asysasi1 —al,,)
s q23 | c.

Therefore,
g** <c¢ foralls>1. ¢))
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If we suppose ¢ > 1, then lim ¢?° = +oo, which contradicts (1). Thus,

s— o0
2 2
g=1and %ﬁ)“ is an integer. The lemma is proved.

We turn now to the initial problem.

Suppose f : N* — IN* is any function such that f(1) = 1 and
fm+2)f(n) = (fF(n+1))24+1997, foralln € N*.

Let b = f(2). Since f(n) is an integer for all n, we have (from the lemma)

2 2 2
thatb € Zand =t 0107 g qhys VA1 oy qpen 1998 ¢ g

and therefore, b | 1998. Thus, f(2) = b is a positive divisor of 1998.

Conversely, let b be a positive divisor of 1998. Define f : N* — R
by f(1) =1, f(2) = b, and f(n + 2) - f(n) = (f(n + 1))2% + 1997. Since
f(1) # 0 and f(2) # 0, each f(n) exists and is non-zero (as in the proof of
the lemma). Now b € Z, and

1-b o b

12 4 b2 4 1997 b2 + 1998 - 1998

is an integer, since b | 1998. By the lemma, f(n) is an integer for all n € IN*.
Thus, f : N* — Z*. An easy induction shows that f(n) > 0 for every n,
since f(1) > 0 and f(2) > 0. Thus, f : N* — IN*, and we obtain an
admissible sequence.

The above discussion reveals that the number of functions that satisfy
both conditions (i) and (ii) in the problem is the same as the number of posi-
tive divisors of 1998. Since 1998 = 2-33.37, the number of positive divisors
of 1998 is (1 +1)-(83+ 1) - (1 + 1) = 16. (It is known that the number of
divisors of p{* ---p2is (a1 +1) - (ar +1).)

4. (a) Find all polynomials of least degree, with rational coefficients,

such that
f(V3+V9) = 3+ V3.

(b) Does there exist a polynomial with integer coefficients such that
F(V3+V9) = 3+ V3?

Solved by Pierre Bornsztein, Pontoise, France.
(@) Let a = 31/3.

Lemma. If o, 3, v € Q such that aa®? + Ba 4+~ =0,thena =8 =~ = 0.
Proof. Let a, 3, v € Q such that

aa’? +Ba+~v = 0. @
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Suppose that o # 0. Since a is a root of the quadratic ax? + Bz +~ = 0, we

must have a = #, where A = 82 — 4ay > 0. Note that VA ¢ Q
(since a ¢ Q). Then

—240® = 3 +38A £ VA(3B%+A).

It follows that 33% + A = 0, which leads to 3 = A = 0. Then we get a = 0,
a contradiction. Therefore, = 0, and equation (1) becomes Ba + v = 0.
Since a ¢ Q, we deduce that 3 = 4 = 0, and the lemma is proved.

Let f € Q[z] such that f(a + a?) = a + 3. If f has degree 1, then
f(z) = az + B for some «, B € Q. Then, a(a + a?) + 3 = a + 3. Then the
lemma implies that « = 0 and o = 1, which is clearly impossible. Therefore,
f cannot have degree 1. If f has degree 2, then f(z) = az? + Bz + ~ for
some «, 3, v € Q. Then, from the lemma, f(a + a?) = a + 3 is equivalent
to

a+ B =0
3a + (3 =1
6 +~v = 3.
The unique solution of this system is @ = %, 8= —%, and v = 0. It follows

that there is a unique polynomial f of least degree having rational coefficients
such that (/3 + V9) = 3 + v/3, namely f(z) = ;2% — ix.

(b) The answer is no.

Suppose, for the purpose of contradiction, that there exists P € Z[z]

such that P(a + a?) = a + 3. Let P(z) = > a;z*, where a; € Z for
=0

each :. We must have n > 3, in view of our solution to (a). Note that

(a 4+ a?)® =12+ 9(a + a?). Then

Pla+a®) = 3 ai(a+a) + (124 9(a+a%) 3 ai(a+a?) .

=0 1=3

It follows that the polynomial
2 n
Q(x) = Z ozt + (12 4 9z) Z ozt 3
=0 =38

satisfies Q(a + a?) = P(a + a?) = a + 3, where Q € Z[z] with
deg Q(x) = deg P(x) — 2. Now we can apply the same reasoning to Q in
place of P. An easy induction leads to a polynomial R of degree at most 2,

with integer coefficients, which satisfies R(a + a?) = a + 3. From (a) we
must have R(z) = 122 — 1, which does not have integer coefficients. This

is a contradiction. The conclusion follows.



287

5. Prove that, for every positive integer n, there exists a positive
integer k such that 19% — 97 is divisible by 2".

Solved by Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; and Pavlos Maragoudakis, Pireas, Greece. We
give the solution of Maragoudakis.

We will define by induction a sequence of positive integers {k,}5° ,
such that 2™ | (19%~ — 97), for all n € IN*.

Since 198 — 97 = 0 (mod 64), welet ky = ko = --- = kg = 8. For
n > 6, suppose that k,, € IN* satisfies 2™ | (19%~ — 97). Define

R if 27+ | (19%~ — 97),
T ) k(2778 + 1) if 20§ (195 — 97).

We will prove that 27+1 | (19%~+1 —97). This is obvious if k,,; is defined by
the first case in the formula above. In the second case, since 2™ | (19%~ —97)
and 2"*1! 4 (19%» — 97), we must have 19%¥» — 97 = 2"(2m + 1) for some
m € N. Then
19kn+1 — 19k~ 4 19%n — 97
(19kn'2"_5 - 1) 195" + 2" (2m + 1) .

19%~+1 — 97

Now, in order to prove that 27+! | (19%~++ —97), it is enough to prove
that 19%+2""° _ 1 = 27(2z + 1), for some = € IN. We start by factoring:

'271.—5

19k» —1 = (19 —1).(19% 1) (19% +1).

- (1922’“" + 1) (192"_6’“" + 1) .
Since 2" | (19%» — 97), where n > 6, we get that 32 | (19%*» — 1) and

64 1 (19%» — 1). Also, forv = 1, 2, ..., we have 19%%*» + 1 = 0 (mod 2)
and (since k,, is even) 19¥%» 4+ 1 = 2 (mod 4). Therefore,

195+2"7° _ 1 = 25.2.2...2.(2z +1) = 2"(2z + 1),
n—>5 factors

for some z € IN.
We have proved that 27+1 | (19%~+1 — 97). The induction is complete.

—_—— S ———

We next turn to solutions by readers to problems of the Turkey Team
Selection Examination for the 38 IMO 1997 [2001 : 168-169].

1. na triangle ABC which has a right angle at A, let H denote the
foot of the altitude belonging to the hypotenuse. Show that the sum of the
radii of the incircles of the triangles ABC, ABH, and AHC isequal to |AH]|.



288

Solved by Jean-Claude Andrieux, Beaune, France; Mohammed
Aassila, Strasbourg, France; Houda Anoun, Bordeaux, France; Michel Bataille,
Rouen, France; Christopher ]. Bradley, Clifton College, Bristol, UK; Geoffrey
A. Kandall, Hamden, CT, USA; Pavlos Maragoudakis, Pireas, Greece. We
give the solution of Maragoudakis.

Triangles HBA, HAC, ABC are similar. Let r, 7, r be the radii of
the incircles of these triangles, respectively. Then

1 To r ri+rs+7r

AB AC  BC  AB+ AC + BC’
Thus,

r(AB+ AC + BC) _ 2[ABC|] _ BC-AH
BC -~ BC BC

ri+reo+r = = AH.

2. The sequences {a,}>>,, {b,}2, are defined through a; = a,

b1 = 8, and ap4+1 = aa, — Bby, by = Bay, + ab, foralln > 1. How
many pairs (a, 3) of real numbers are there such that

a1997 = b1 and biger = aq?

Solved by Mohammed Aassila, Strasbourg, France; Michel Bataille,
Rouen, France; Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; and Athanasias Kalakos, Athens, Greece. We
give the solution by Bataille.

There are 1999 such pairs, namely (0, 0) and the pairs (cos 0, sin 6;)

where
T 2k

0, = i
k * loos

— (k = 0,1,...,1997).
3996

To prove this result, we remark that, for all n > 1, the complex number
an+1 + iby,41 is given by

Apn41 + ibn—}—l = (a + Z/B)(an + lbn) )

so that a,, + ib, = (a + ¢8)™ (since a; + ib; = a + i3). We will have
a1997 = by and byggr = a; if and only if (o + i3)1%°7 = i(a — iB3). Letting
z = o + i3, we have the equation 2'%%7 = iz, to be solved for z € C.
An obvious solution is = = 0. Any non-zero solution z is necessarily of
modulus 1, in which case z = 1/z and we have 21998 = . Since the solu-
tions of 2'99% = 4 are the 1998 complex numbers exp (i (355 + %)) with
k=0,1,...,1997, we have the announced result.

4. The edge AE of a convex pentagon ABCDE whose vertices lie on
the unit circle passes through the centre of this circle. If |AB| = a, | BC| = b,
|CD| = ¢, |DE| = d and ab = cd = %, compute |AC| + |CE| in terms of
a, b, c, d.
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Solved by Athanasias Kalakos, Athens, Greece; and Geoffrey A. Kandall,
Hamden, CT, USA. We give Kandall’s write-up.

Let |AC| = z, |CE| = y, |AD| = p, |BE| = q. The angles ABE,
ACE, ADE are each 90°, so that a? 4 ¢%2 = 22 4+ y? = p? + d? = 4.
By Ptolemy’s Theorem, dx + 2¢c = py; whence, d?z? + = + 4c? = p3y?.
Therefore,

x = (4—d*)y® —4c® —d’x? = 4y? —4c® — d*(2® + y?)
= 4y? —4c® —4d?.
Analogously, the relation ay 4+ 2b = gz leads to y = 422 — 4a? — 4b2.
Consequently, z + y = 16 — 4(a? + b2 + 2 + d?).

5. Prove that, for each prime number p > 7, there exists a positive
integer n and integers x1, 3, ..., Tn, Y1, Y2, - - -, Y Which are not divisible
by p, such that

w% + yf = :L'g (mod p) ,
a:g + yg = acg (mod p) ,
wi—l + yi—1 = "BEL (mod p) ,
z2 +y2 = 22 (modp) .

Solved by Mohammed Aassila, Strasbourg, France; Michel Bataille,
Rouen, France; and Christopher ]. Bradley, Clifton College, Bristol, UK. We
give Bradley’s solution (modified by the editors).

We consider two cases:

p =1 (mod 4) or p =3 (mod 4) .

(a) p = 3 (mod 4). Then p = 4k + 3 for some integer k (where k& > 0
since p > 7), and we observe that

12 4K = (k+2)° (modp) . (1)
Setting 1 = 1, y1 = k, and x> = k + 2, we have 22 + y? = 22 (mod p).
Suppose now that we are given z? +y? = :c,%H (mod p) for some i > 1. We
will construct integers y; 41 and x; > such that =2 1 +y2 L = x? > (mod p).
We first multiply (1) by 27, to yield

3”?4-1 + kzm?+1 = (k+ 2)33?4_1 (mod p) .

Then we choose y;+1 = kx;1 (mod p) and z;42 = (k + 2)z;+1 (mod p).

Since, for any prime p, there are a finite number of quadratic residues,
eventually we will have z; = z; (mod p) for some j > ¢. We can then
re-label x; as =; and y; as y1, and begin the process there.
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For example, if p = 13, then p = 4k + 1 for kK = 3. We start with
12492 = 11 (mod 13) ,

and proceed to get the following circuit:

112+ 82 = 42 (mod 13),

4> +10? = 5% (mod 13)
52462 = 32 (mod 13),
32412 = 72 (mod 13),

72 4+112 = 122 = 1% (mod 13) .

(b) p =1 (mod 4). Then p = 4k + 1 for some integer k (Where & > 1
since p > 7), and we observe that

12 + (3k)? = (3k + 2)? (mod p) . @)
Our process is similar to part (a), only this time we multiply (2) by =2 ', and
choose y;+1 = 3kx;+1 (mod p) and ;42 = (3k + 2)x;41 (mod p).
6. Given an integer n > 2, find the minimal value of
3 3 z,

+ +oee A+
T2+ Tz +-+Tpn  T1t+ Tzt A+ Tn i e |

subject to 2 + zZ + --- + 22 = 1, where z4, x», ..., x,, are positive real
numbers.

Solved by Mohammed Aassila, Strasbourg, France; Michel Bataille,
Rouen, France; Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; Murray S. Klamkin, University of Alberta,
Edmonton, AB; and Pavlos Maragoudakis, Pireas, Greece. We give the solu-
tion of Bornsztein.

n P
More generally, we will find the minimal value of Z ( i ) subject

S — !
i=1 *
toxf + x5 +---+ a3 =1, where S =z} + 2} +--- 4+ ], and p, r, s are
positive real numbers such that » < s < £. The given problem is the special
casep=5,r=1,s = 2.

Applying the Cauchy-Schwarz Inequality, we have

n n P n 2
<Z(s_m:)> (stixJ > (me/2> ,

with equality if and only if there exists a positive real number A\ such that
S — a7 = AxP/?.
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By the Power-Mean Inequality (since p/2 > s),

- / ’ "af:]”/z2 ",z p/e n?
p/2 _ 2 % 2 i _
() = (E5) == (5%) -

=1 i=1

with equality if and onlyif p=2sorz; =2 = .- =z, = # Also,
S—2z}) = (n—1) z; = n(n—1) -+

n s r/s n(n —
< n(n—l)(ZJ) :%,

i=1
by the Power-Mean Inequality (since s > r). Here, equality occurs if and
onlyifr=sorz; =23 =--- ==z, = # Since Z(S—:n:) > 0, we

=1

have

np/s —
S—zr — C — nn-1) n—1

! ’ Z(S - "B:) nr/s
i=1

n 2
San)
i—1 n("’""s_p)/s

n P
T,
-

K3

Equality occurs whenz; = 2o = -+ =z, = % Therefore, the expres-
n S
sion on the right side above is the minimal value of the sum on the left side,
subjectto x§ + x5 + -+ + ) = 1.
Setting p = 5, »r = 1, and s = 2, we find that the minimal value in the
given problem is nn 1)’

—_—— S ———

We now turn to readers’ solutions of problems of the Chilean Mathe-
matical Olympiads 1994-95 [2001 : 169-170].

1. Given three straight lines in a plane, that concur at point O, con-
sider the three consecutive angles between them (which, naturally, add up to
180°). Let P be a pointin the plane not on any of these lines, and let A, B, C
be the feet of the perpendiculars drawn from P to the three lines. Show that
the internal angles of A ABC are equal to those between the given lines.
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Solved by Christopher ]. Bradley, Clifton College, Bristol, UK; and
Geoffrey A. Kandall, Hamden, CT, USA. We give Kandall’s write-up.

A

The points O, C, P, A, B lie on the circle having OP as diameter.
Therefore, ZABC = ZAOC and ZACB = ZAOB. As a consequence,
/BAC is equal to the third consecutive angle at O.

E H
P ABCDEFGH is a cube of edge 2. Let M
2 be the mid-point of BC and N the mid-point
) N of EF. Compute the area of the quadrilateral
Y AMHN.
A B

Solved by Robert Bilinski, Outremont, QC; Pierre Bornsztein, Pontoise,
France; Christopher ]J. Bradley, Clifton College, Bristol, UK; and Geoffrey
A. Kandall, Hamden, CT, USA. We give the solution of Bilinski.

Since clearly NH = m, the four points A, M, H, and N are co-
planar. Since AENH, AFNA, ABMA, and ACM H are right triangles
whose sides have lengths 1 and 2, we see that these triangles are congruent
and AM = MH = HN = N A. Quadrilateral NH M A is thus a rhombus.

Let us find the length of its diagonals AH and N M.

By applying the Pythagorean Theorem in right triangle AEHC, we
have EC = vEH? + HC? = 2+/2. Noticing that NM = EC, we get
NM = 2+/2. By the same reasoning, we see that AC = 2v/2. Applying the
Pythagorean Theorem in AACH, we get AH = /AC? + HC? = 2/3.

Now, the area of a rhombus is half the product of the lengths of its
diagonals. Hence, we obtain 21/6 as the area.
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3. Given a trapezoid ABCD, where AB and DC are parallel, and
AD = DC = AB/2, determine ZACB.

Solved by Robert Bilinski, Outremont, QC; Christopher ]. Bradley,
Clifton College, Bristol, UK; Athanasias Kalakos, Athens, Greece; Geoffrey
A. Kandall, Hamden, CT, USA; Edward T.H. Wang, Wilfrid Laurier Univer-
sity, Waterloo, ON. We give the solution of Bilinski.

Let M be the mid-point of AB, and let E be the point of intersection
of AD and BC. Since DC = AB/2 and DC||AB, we see by Thales that
D is the mid-point of AFE and C is the mid-point of BE. Thus, M, D, and
C are the mid-points of the sides of AABE. By the Mid-point Theorem,
AMCD is a parallelogram and MC = AD = AB/2.

In AABC, MC is a median which is half the length of the side AB.
Hence, A ABC has a right angle at C. That is, ZACB = 90°.

4 1n a circle of radius 1 are drawn six equal arcs of circles, radius 1,
cutting the original circle as in the figure. Calculate the shaded area.

Solved by Robert Bilinski, Outremont, QC; Christopher ]. Bradley,
Clifton College, Bristol, UK; and Edward T.H. Wang, Wilfrid Laurier Uni-
versity, Waterloo, ON. We use Bilinski’s solution.

Since both arcs passing through A and B are of radius 1, they are sym-
metric about the line AB. Hence, the area enclosed by these two arcs is cut
in half by the line segment AB. If line segments are drawn through all ver-
tices of the hexagonal star, we get a regular hexagon inscribed in the circle.
From this we can easily calculate the area of the total white border, for it will
be twice the area between the circle and the hexagon.

The hexagon’s area is six times the area of an equilateral triangle of

side 1, namely 6 - % = % The circle has area wr? = w. Hence, the

hexagonal star has area = — 2 (Tl‘ — %) =3v3 — .

Thus, since the shaded area has only 5/6 the area of the hexagonal star,
its area is 2(3v/3 — ).
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5 In Eht triangle ABC the altitude h, = CD is drawn to the
hypotenuse AB. Let P, P;, P, be the radii of the circles inscribed in the
triangles ABC, ADC, BCD, respectively. Show that P + P, + P, = h..

Solution and observation from Jean-Claude Andrieux, Beaune, France;
Michel Bataille, Rouen, France; Christopher ]. Bradley, Clifton College,
Bristol, UK; and Geoffrey A. Kandall, Hamden, CT, USA.

This is the same as question 1 of the Turkey Team Selection Test given
in the same number of the Corner. See the solution given above (p. 287).

6. Consider the product of all the positive multiples of 6 that are less
than 1000. Find the number of zeroes with which this product ends.

Solved by Robert Bilinski, Outremont, QC; Pierre Bornsztein, Pontoise,
France; Christopher ]. Bradley, Clifton College, Bristol, UK; Geoffrey A.
Kandall, Hamden, CT, USA; and Edward T.H. Wang, Wilfrid Laurier Uni-
versity, Waterloo, ON. We give the solution of Kandall.

The multiples under consideration are the numbers 6n (1 < n < 166).
Their product is P = 2166.3166.(166!). The prime factorization of P contains

exactly 40 5’s, since
166 n
25

i {IGGJ . {IGGJ "
s | | 5
Therefore, P is divisible by 104°, but not by 104'; that is, P ends with 40

\‘166
n=1
Zeroes.

—— | =33+6+1 = 40.
125J To+

7. Let x be an integer of the form

x = 111...1.
————
n
Show that, if = is a prime, then n is a prime.

Solved by Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; and Athanasias Kalakos, Athens, Greece. We
use Bradley’s write-up.

Note that
10" — 1 1
z =111---1 = 14+104+---4+10""1 = — — = (10" —-1).
—_— T10+t 10—1 9( )

n times
Now, if n is composite, say n = ni;n, (Where ny, ny > 1), then

10™ —1 (10“1—1
r — — — E—
9 9

) (1 + 10™ + 10217,1 + e+ lo(nz—l)nl) )

ni __

Since % is an integer greater than 1, then x is composite.

Hence if = is prime, n must be prime.
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8. Let  be a number such that

1
rx+— = —1.
T
Compute
—1
1994
r + 21994 °

Solved by Robert Bilinski, Outremont, QC; Pierre Bornsztein, Pon-
toise, France; Christopher ]. Bradley, Clifton College, Bristol, UK; Athanasias
Kalakos, Athens, Greece; and Edward T.H. Wang, Wilfrid Laurier University,
Waterloo, ON. We give Bornsztein’s solution.

Let  be a number such that = + % = —1. Then z = e*7/3 = j or
x = 3. Since 1/j = j and 52 = j and 53 = 1, we deduce that

o If z = j, then 21994 — 1 :jz—,lz:.;—j:—i\/?_)_

$1994 J

o1fz =j, then2'® — L = —iV3=iV3.
Then

0. Let ABCDbeanm x n rectangle, with m, n € IN. Consider a ray
of light that starts from A, is reflected at an angle of 45° on another side of
the rectangle, and goes on reflecting in this way.

(a) Show that the ray will finally hit a vertex.

(b) Suppose m and n have no common factor greater than 1. Determine the
number of reflections undergone by the ray before it hits a vertex.

Solved by Robert Bilinski, Outremont, QC; Pierre Bornsztein, Pontoise,
France; and Christopher ]. Bradley, Clifton College, Bristol, UK. We use
Bradley’s explanation.

(a) Extend the rectangle in all directions to form a Cartesian grid. (The
example in the figure below has m = 3 and n = 2.)

6

d

4 A
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The actual path is mirrored by a straight line with equation y = =.
The ray of light will eventually hit the vertex corresponding to the vertex
(mn, mn) in the extension.

(b) The ray crosses m — 1 lines in one direction and n — 1 in the other
(in the extension). Thus, the number of reflections is m + n — 2.

10. Let a be a natural number. Show that the equation

2?2 —y? = a3

always has integer solutions for = and y.

Solved by Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; Geoffrey A. Kandall, Hamden, CT, USA;
Athanasias Kalakos, Athens, Greece; and Edward T.H. Wang, Wilfrid Lau-
rier University, Waterloo, ON. We use the solution of Kalakos.

Letmzw,yzw. Clearly, =, y € Z. Moreover,
2 _ 2 2 2
mz—y2 _ (m—y)(m—i—y) _ a‘“+a—a—+a .a +a+a—a
2 2
= a2-a: a3.

Next we move to solutions to problems of the May 2001 number of the
Corner and the 28th Austrian Mathematics Olympiad 1997 [2001 : 231-232].

1. Let a be a fixed whole number.
Determine all solutions z, y, z in whole numbers to the system of equa-
tions

5. + (a+2y + (a+2)z = a,
2a+4)x + (a®>+3)y + (2a+2)z = 3a-—1,
2a+4)zx + (a+2)y + (a*+3)z = a+1.

Solved by Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; José Luis Diaz-Barrero, Universitat Politécnica
de Catalunya, Barcelona, Spain; Pavlos Maragoudakis, Pireas, Greece;
Vedula N. Murty, Dover, PA, USA. We give Bradley’s write-up.

The second and third equations give

(a—1*(y—2) = 2(a—1).

When a = 1, the original system reduces to two independent equations
5¢ + 3y + 3z = 1 and 6x + 4y + 4z = 2, from which we obtain a one-
parameter set of whole-number solutions x = —1, y =1+t 2z = 1 — ¢,
where t € Z.
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When a # 1, we have y — z = % If y, z are whole numbers, then

so is their difference, which means that a — 1 | 2, restricting the possibilities
toa=—-1,a=0,a=2,a=3.

Case 1. a = —1. The equations become
5 + Y + z = -1 '
2r4+4y = —4,
2¢c +4z = 0,
giving a solutionz = 0, y = —1, z = 0.

Case 2. a = 0. The equations become

S5t +2y+2z = 0,
dr+ 3y +2z = -1,
dr+2y+3z = 1,
giving a solutionz =0, y = —1, z = 1.
Case 3. a = 2. The equations become
St +4y +4z = 2,
8x+Ty+6z = 5,
8 +6y+7z = 3,

giving a solution x = —6, y = 5, 2 = 3.

Case 4. a = 3. The equations include
5¢c +5y+5z = 3,

which evidently has no whole-number solutions, since 5 t 3.

2. Let K be a positive whole number. The sequence {a, :n > 1}is
defined by a; = 1 and a.,, is the n'" natural number greater than a,,_; which
is congruent to n modulo K.

(a) Determine an explicit formula for a,,.
(b) What is the result if K = 2?

Solved by Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; Athanasias Kalakos, Athens, Greece; and Murray
S. Klamkin, University of Alberta, Edmonton, AB. We give the write-up of
Bornsztein.

(a) Let n be a positive integer.

Since a,, = n mod K, the first integer which is greater than a,, and
congruent to n 4+ 1 modulo K is a,, + 1. Thus, the (n + 1) natural number
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greater than a,, which is congruent to n modulo K is a,,+1 = a,, + 1 + nK.
Summing these relations, we get that, for every integer n > 1,

n—1

a, = al-l—n—l—l—KZi = n-+

=1

n(n—l)K‘
2

(b) For K = 2, we immediately have a,, = n? forn > 1.

4 Determine all quadruples (a, b, ¢, d) of real numbers satisfying the
equation

256a3b3c3d® = (a6 + b2+ %+ dz)(a2 + b8+ %+ dz)
x(a? + b% + c® + d*)(a? + b% + % + d°) .

Solved by Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley,
Clifton College, Bristol, UK; and Murray S. Klamkin, University of Alberta,
Edmonton, AB. We give Bornsztein’s write-up.

Let (a, b, c,d) be a quadruple of real numbers satisfying the equation.
If one of the numbers is zero, then all are 0. From now on, we suppose that
none of the four numbers is 0. Since the right-hand side is positive there must
be an even number of negative reals amongst a, b, ¢, d. Then (a, b, c,d) is a
solution if and only if (|al, |b], |c]|,|d]|) is a solution. Thus, we may suppose
that a, b, c, d are positive.

From the AM-GM Inequality,
a6 _|_ b2 _|_ C2 _+_ d2 Z 4(a6b2C2d2)1/4,

and similarly for the other three factors on the right-hand side of the equa-
tion. Thus,

(a6+b2+c2+d2)(a2—|—b6+cz+d2)
x(a® + b + c® + d?)(a®? + b* + 2 + d°)
> 256(a6b2c2d2)1/4(a2b602d2)1/4 x (a2b2c6d2)1/4(a2b2c2d6)1/4
= 256a3b3c3d3,

which indicates that the given equation is the equality case of the AM/GM
Inequality. Therefore,

a® = b =% =d? = a? = b8 = & = df;

thatis,a=b=c=d =1.

Then the solutions are (0, 0,0, 0) and (&1, €2, €3, £4) Where g; = £1 for
i=1,2,34and [[[_, e = 1.
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5. We define the following operation which will be applied to a row of
bars being situated side-by-side on positions 1, ..., IN:

Each bar situated at an odd-numbered position is left as is, while each
bar at an even-numbered position is replaced by two bars. After that, all
bars will be put side-by-side in such a way that all bars form a new row and
are situated (side-by-side) on positions 1, ..., M.

From an initial number ag > 0 of bars there originates (by successive
application of the above-defined operation) a sequence, {a,, : n > 0} of

natural numbers, where a,, is the number of bars after having applied the
operation n times.

(a) Prove that for all n > 0 we have a,, # 1997.
(b) Determine the natural numbers that can only occur as ag or a;.

Solved by Pierre Bornsztein, Pontoise, France; and Christopher ]J.
Bradley, Clifton College, Bristol, UK. We give Bornsztein’s solution.

(a) Let n be a non-negative integer. When the operation is applied to
a row of a,, bars, the total number of bars increases by ‘%" if a,, is even, and

-1, .
by a"2 if a,, is odd. Thus, for every n > 0,
—3‘;” if a,, is even,
An+1 = 3a, — 1

if a,, is odd.

Let p be a natural number with p = 2 mod 3. Let n > 0 be an integer.
Suppose a,t1 = p. If a,, is even, then 3a,, = 2a,+1 = 2p = 1 (mod 3),
a contradiction, while if a,, is odd, then 3a,, = 2ap4+1 +1 =2p+1 = 2
(mod 3), a contradiction. Thus, a,+1 # p. Since 1997 = 2 (mod 3), part
(a) is proved.

(b) We have seen that if p = 2 (mod 3), then p can only occur in the
sequence as ag.

Case 1. p = 9k, with k£ € IN*.
For ag = 4k, we have a; = 6k and a; = 9k. Thus, p can occur in the
sequence as a,, With n > 2.

Case 2. p = 9k + 1, with £ € IN.
For ag = 4k + 1, we have a; = 6k + 1 and ax = 9% + 1. Thus, p can occur
in the sequence as a,, with n > 2.

Case 3. p = 9k + 3, with k£ € IN.

Suppose that there exists an integer n > 1 such that a,,+1 = p. lf a,, is even,
then 3a,, = 2p = 2(9k + 3), and hence, a,, = 6k + 2 = 2 (mod 3) with
n > 0, a contradiction. If a,, is odd, then 3a,, = 2p+1=2(9k+3)+1=1
(mod 3), a contradiction. Therefore, p cannot occur in the sequence as a,,
with n > 2.
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Case 4. p = 9k + 4, with k£ € IN.

For ag = 4k + 2, we have a; = 6k + 3 and a, = 9k + 4. Thus, p can occur
in the sequence as a,, with n > 2.

Case 5. p =9k + 6, with k € IN.

For ag = 4k + 3, we have a; = 6k + 4 and a> = 9% + 6. Thus, p can occur
in the sequence as a,, with n > 2.

Case 6. p = 9k + 7, with £ € IN.

Suppose that there exists an integer n > 1 such that a,, 1 = p. If a,, is even,
then 3a,, = 2p = 2(9k + 7) = 2 (mod 3), a contradiction. If a,, is odd,
then 3a,, = 2p+1 = 2(9k + 7) + 1, and hence, a,, = 6k + 5 = 2 (mod 3)
with n > 0, a contradiction. Therefore, p cannot occur in the sequence as a.,
with n > 2.

It follows that the natural numbers that can only occur as ag or a; are
those congruent to 2, 3, 5, 7, or 8 (mod 9).

6. Let n be a fixed natural number. Determine all polynomials
x? 4+ ax + b, where a? > 4b, such that 2 4+ ax + b divides 2™ + ax™ + b.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Pontoise,
France; Christopher ]. Bradley, Clifton College, Bristol, UK; Athanasias
Kalakos, Athens, Greece; and Murray S. Klamkin, University of Alberta,
Edmonton, AB. We give Bataille’s write-up.

If n = 1, all polynomials 2 4 ax + b are solutions. We will suppose
n > 1 from now on. Since a? > 4b, there exist real numbers z, x5 (not
necessarily distinct) such that 2% + az + b = (x — z1)(x — x2). It follows
that 22 + az™ + b = (2™ — z1) (=™ — z2).

Now, if 2 + az + b divides 2™ + ax™ + b, then =1, 2 are roots of
x®™ + ax™ + b, so that 7 = z; or 7 = =z, and 2§ = z; or 2§ = z;.
Therefore, z; and x> must belong to {—1,0,1}.

Now we check the possible cases:

elf x; = o = 0,thena = b = 0 and =% + ax + b = z? divides
2™ 4+ azx™ + b = 22",

elfxy =0,z =—1,thena=1,b=0and 22 +ax +b=z(x+ 1)
divides z™(z™ + 1) only if n is odd.

elfx; =0,z =1, then 22 + ax + b = =(z — 1) divides z"(z™ — 1).

elfxy = —1, 2, = —1,thenz? +ax+b = (= +1)2 divides (™ +1)2
only if n is odd.

elfx; =1, 2z, =1, then 22 4+ ax + b = (z — 1)2 divides (z™ — 1)2.

elf x; = —1, o = 1, then 22 + ax + b = z2 — 1 divides 2™ — 1.
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In conclusion, for n odd (n > 1), the solutions are x2, x(z+1), z(z—1),
(z + 1)2, (x — 1)2, 2 — 1; and for n even, the solutions are =2, z(z — 1),
(z —1)2, 22 — 1.

Editor’s comment: Klamkin points out that if the condition a? > 4b
is eliminated, the zeros x,, > can be complex cube roots of unity, allowing
another possibility, 2 + = + 1, provided n is not a multiple of 3.

—_—— N r——— S ——

Next we move to readers’ solutions for problems of the Islenzka
Staer6fraedikeppni Framhaldsskélanema 1995-1996 [2001 : 232-233].

1. calculate the area of the region in the plane determined by the
inequality
|zl + |yl + [z +y| < 2.

Solved by Robert Bilinski, Outremont, QC; Pierre Bornsztein, Pontoise,
France; Christopher ]. Bradley, Clifton College, Bristol, UK; José Luis Diaz-
Barrero, Universitat Politécnica de Catalunya, Barcelona, Spain; and Murray
S. Klamkin, University of Alberta, Edmonton, AB. We give the solution of
Diaz-Barrero.

Let A = {(z,y) € R? : |z| + |y| + |z + y| < 2} be the given region.
We claim that A has area 3. To prove this, we start by recalling that for all
a € R, |a| = | — a. It follows that .4 is symmetric with respect to reflection
through the origin. Hence, it suffices to investigate the given inequality only
when y > 0.

In the first quadrant, where > 0 and y > 0, we have = 4+ y > 0, and
the inequality becomes = + y + « + y < 2. Therefore, the part of A in this
quadrant is the triangle

AOB = {(z,y) €R?*:2>0,y>0,z+y < 1}.

In the second quadrant, where < 0 and y > 0, we have two possi-
bilities: (a) £ +y > 0 or (b) = + y < 0. In case (a), the inequality becomes
—z + y+ = + y < 2, and we have the triangle

BOC = {(z,y) eR*:2<0,0<y <1},

In case (b), the inequality becomes —x + y — (z + y) < 2, determining the
triangle

COD = {(z,y) €ER?: -1 <x2<0,y>0}.

These triangles can be seen in the figure on the next page. Reflecting them
through the origin, we see that A is the hexagon ABCDEF, with area 3.
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2. Suppose that a, b, and c are the three roots of the polynomial
p(z) = 3 — 1922 + 26x — 2. Calculate

+ -+

[

SHE
S o=

Solved by Rahul Banotra, student, Sir Winston Churchill High School
and Samapti Samapti, Western Canada High School, Calgary, AB; Marcus
Emmanuel Barnes, student, York University; Pierre Bornsztein, Pontoise,
France; Christopher ]. Bradley, Clifton College, Bristol, UK; José Luis
Diaz-Barrero, Universitat Politécnica de Catalunya, Barcelona, Spain;
Elizabeth Park, Western Canada High School, Calgary, AB. We give the
solution of Banotra and Samapti.

If a, b, c are the roots of the polynomial, then

(x —a)(x —b)(x —c) = x> —192% + 26x — 2. 1@

Expanding yields:

(x — a)(x — b)(x — ¢)
= (22 — (a+b)x + ab)(z — ¢)
= 2% — (a+ b)x? + abx — cx® + (a + b)cx — abc
= x® — (a+ b+ c)x? + (ab + bc + ac)x — abe. )

From (1) and (2) we get

a+b+c = 19,
ab+bc+ac = 26,
abc = 2.

1 _ bc + ac + ab :§:13.

1,1
Th h 4+ 4=
us, we have — 4 - 4 — abe 5
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3. A collection of 52 integers is given. Show that amongst these num-
bers it is possible to find two such that 100 divides either their sum or their
difference.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Pontoise,
France; Christopher ]. Bradley, Clifton College, Bristol, UK; Hongyi Li, stu-
dent, Sir Winston Churchill High School, Calgary, AB; Murray S. Klamkin,
University of Alberta, Edmonton, AB; and Pavlos Maragoudakis, Pireas,
Greece. We give the solution of Klamkin.

This problem appeared as a Russian Olympiad problem quite some time
ago. Unfortunately, I do not have a reference.

Each of the numbers can be expressed in the form 100a + b, where
—49 < b < 50. Since there are only 51 possible values for |b|, at least two of
them must be the same. If the corresponding numbers have opposite signs
associated with b, then the sum of the numbers is divisible by 100; if they
have the same signs, then the difference is divisible by 100.

The result is true more generally if we replace 100 by n and 52 by
n/2] + 2.

4. (i) Show that the sum of the digits of every integer multiple of 99,
from 1 - 99 up to and including 100 - 99, is 18.

(ii) Show that the sum of the digits of every integer multiple of the
number 10™ — 1, from 1 . (10™ — 1) up to and including 10™ - (10™ — 1),
isn-9.

Solved by Michel Bataille, Rouen, France; Christopher ]. Bradley, Clifton
College, Bristol, UK; Murray S. Klamkin, University of Alberta, Edmonton,
AB; and Samapti Samapti, Western Canada High School, Calgary, AB. We
give the solution of Klamkin.

(i) 99n = 100n — n. Thus, if n is a single-digit number, the digits
resulting from subtracting n from the 3-digit number n00 are n — 1, 9, and
10 — n, for a sum of 18. If n is a 2-digit number ab with b = 0, the digits of
100n —narea — 1, 9, 10 — a, and 0, which still sum to 18; if b # 0, then
the digits of ab00 — ab are a, b — 1,10 — a — 1, and 10 — b, again summing
to 18. (In a similar way it follows that the sum of the digits of every multiple
of 99 is 18).

(ii) Proceeding in a similar way as in (i), it follows that the sum of the
digits of the number 99...9m, where there are n 9’s, is obtained by sub-
tracting m from m00...0. For example, if m is the 2-digit number ab not
ending in 0, then the successive digits are a, b—1,9,9,...,9,10 —a — 1,
and 10 — b. Hence, the sum of the digits is 9n.
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5. The sequence {a,} is defined by a; = 1 and, forn > 1,
Qp

Api1 = ———— .
ot 1+ na,

Find a1996-

Solved by Michel Bataille, Rouen, France; Robert Bilinski, Outremont,
QC; Pierre Bornsztein, Pontoise, France; Christopher ]. Bradley, Clifton
College, Bristol, UK; Murray S. Klamkin, University of Alberta, Edmonton,
AB; Samapti Samapti, Western Canada High School, Calgary, AB; Heinz-
Jiirgen Seiffert, Berlin, Germany; D.]. Smeenk, Zaltbommel, the Netherlands;
and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON. We give
the solution of Bataille.

By an immediate induction, a,, > 0 for all n.

Now, 1 _1t+ne. _ 1 + n for all n. It follows that
Qn 41 an an
1 1 _%:95(1 1)_m§:5k_1995x1996
G1996 Q1 =1 \Qk41  ag o 2
Since a; = 1, we deduce that 1 — + 1995 X 1996 _ 1991011.
1 aigge 2
Theref =
erelore, a1996 = 7997011

6. Ina square bookcase two identical books are placed as shown in the
figure. Suppose the height of the bookcase is 1. How thick are the books?

Solved by Rahul Banotra, student, Sir Winston Churchill High School,
Calgary, AB; Robert Bilinski, Outremont, QC; Christopher J]. Bradley,
Clifton College, Bristol, UK; Murray S. Klamkin, University of Alberta,
Edmonton, AB; and D.]. Smeenk, Zaltbommel, the Netherlands. We give
Bilinski’s solution.

The solution is illustrated by a diagram at the end.

Due to the abundance of right angles and complementary angles, we
have two pairs of congruent triangles: AABI = AFGJ, ACJB = ANHIG.
All four of these triangles are similar, since they have corresponding angles
equal.
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Since GI = BJ = 1 (the book height), we have HI = CJ = cos 6
and HG = BC = sinf. Since AH = CF = 1, we quickly conclude that
Al = JF =1 — cos#.

— cos 60 — cos 6

In AABI, we have sinf = , which gives BI = , the

no
width of the book (BI = GJ = CD = FE) In a similar fashlon we find
cos0(1 — cos 0)

that AB =
sin 6
Since
cos 6(1 — cos 0) ) 1—cosf
1 = AD = AB+BC+CD = - +sinf + ——
sin @ sin @
we get
cosO — cos20 +sin?20 +1 — cos O _
sin @ - '
2sin? 6
: = 1,
sin @
1
sinf = —.
2
Hence, # = 30°, and the book width is BI = % =2— /3.
cos0(1 — cos ) 1 — cos@
sin 0 i sin 6
A . B sin 0 C
1— cosf
I
]
1
cos 6
U
J
0
H sin 6 G F E

—_—— S ———

That concludes this issue of the Corner. Please keep sending me Olympiad
contests and your nice solutions.

B W D W




