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THE OLYMPIAD CORNER
No. 228

R.E. Woodrow

All communications about this column should be sent to Professor R.E.
Woodrow, Department of Mathematics and Statistics, University of Calgary,
Calgary, AB, Canada. T2N 1N4.

We begin this number with problems of the 2000 Belarusian Mathe-
matical Olympiad. My thanks go to Andy Liu, Canadian Team Leader to the
IMO in Korea, for collecting them.

2000 BELARUSIAN MATHEMATICAL OLYMPIAD

1. Pete and Bill play the following game. At the beginning, Pete
chooses a number a, then Bill chooses a number b, and then Pete chooses a
number ¢. Can Pete choose his numbers in such a way that the three equa-
tions 2 +ax?+br+c =0, 23+ bx?>+cx+a =0and 23 +cx?+ax+b=0
have a common

(a) real root?

(b) negative root?

2. How many pairs (n, q) satisfy {¢?} = {23(’)0 , Where n is a positive
integer and ¢ is a non-integer rational number such that 0 < g < 2000?

[Editor’s comment: {r} means the “fractional part” of r.]

3. Given a fixed integer N > 5, and any sequence e, e3, ..., €n,
wheree; € {1,—1}for¢ =1, 2,..., N, amoveis made by choosing any five
consecutive terms and changing their signs. Two such sequences are said to
be similar if one of them can be obtained from the other in a finite number of
moves. Find the maximal number of sequences no two of which are similar
to each other.

44 1Let ABCD be a quadrilateral with AB parallel to DC. A line ¢
intersects AD, AC, BD, and BC, forming three segments of equal length
between consecutive points of intersection. Does it follow that £ is parallel
to AB?

5. Nine points are given on a plane, no three on a line. Every pair of
points is connected by a segment. Is it possible to colour these segments by
some colours so that for each colour used, there are exactly three segments
of this colour, and these three form a triangle with vertices among the given
points?

6. A vertex of a tetrahedron is called perfect if one can construct a tri-
angle using edges from this vertex as its sides. What are the possible numbers
of perfect vertices a tetrahedron can have?
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7. (a) Find all positive integers n such that (a®)™ = b’ has at least one
solution in integers a and b, both exceeding 1.

(b) Find all positive integers a and b such that (a®)® = b°.

8. To any triangle ABC with AB = ¢, BC = a,CA = b, /A = q,
/4B = 3, and ZC = ~, we assign the sextuple (a, b, ¢, o, 3,), where the
angles are measured in radians. Find the minimal value of n for which there is
a non-isosceles triangle ABC such that there are exactly n distinct numbers

in (a, b, c, o, B,7).

—_— e r———— ——

As a second problem set we give the 2000 Taiwanese Mathematical
Olympiad. Again, thanks to Andy Liu for collecting them for our use while
Team Leader for the Canadian Team to the IMO in Korea.

2000 TAIWANESE MATHEMATICAL OLYMPIAD

1. Find all pairs (x,y) of positive integers such that y** = z¥+2.

2. In an acute triangle ABC, AC > BC and M is the mid-point
of AB. Let AP be the altitude from A. Let BQ be the altitude from B
meeting AP at H. Let the lines AB and PQ meet at R. Prove that the lines
RH and CM are perpendicular to each other.

3. Let s = {1, 2, 3, ..., 100}, and let P denote the family of all
subsets T of S with |T'| = 49. For each set T in P, we label it with a number
chosen at random from {1, 2, ..., 100}. Prove that there exists a subset M

of S with |M| = 50 such that for each x € M, M — {z} is not labelled
with .

b4 Let ¢(k) denote the number of positive integers n < k such that
ged(n, k) = 1. Suppose that ¢(5™ — 1) = 5™ — 1 for some positive integers
m and n. Prove that gcd(m,n) > 1.

5 LetA= {1, 2, 3, ..., n}, where n is a positive integer. A subset
of A is said to be connected if it consists of one element or some consecutive
integers. Determine the greatest integer k for which A contains k distinct
subsets such that the intersection of any two of them is connected.

0. Let f be a function from the set of positive integers to the set of
non-negative integers such that f(1) = 0 and

f(n) = max{f(j) + f(n —3) + 3}
for all n > 2. Determine f(2000).

—_— N~ S O ————
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Now we turn to the problems of the Composition de Mathématiques,
Classe Terminale S given [2000 : 453-454]. We received reader solutions by
Mohammed Aassila, Strasbourg, France. However, we will only present here
the web address, provided by Pierre Bornsztein, Pontoise, France, where the
official solutions may be found. Go to

www.ac-poitiers.fr/voir.asp?r=88

Then click successively on “Pour s’y retrouver”, “Plan du site”, “Concours
général”, “Concours 97: indications et corrigé”, and finally on “Corrigé des 5
exercices’ .

—_— N~ S ————

Next, we give solutions to the Ukrainian Mathematical Olympiad,
Selected Problems 1997 [2001 : 5-6].

1. (9th Grade) Cells of some rectangular board are coloured as chess-
board cells. In each cell an integer is written. It is known that the sum of
the numbers in each row is even and the sum of numbers in each column is
even. Prove that the sum of all numbers in the black cells is even.

Solved by Bruce Crofoot, University College of the Cariboo, Kamloops,
BC; and Murray S. Klamkin, University of Alberta, Edmonton, AB. We pre-
sent the solution by Crofoot.

First observe that in any particular row or column, the sum of the num-
bers in the black cells has the same parity (even or odd) as the sum of the
numbers in the white cells, because the sum over all cells in the column is
even.

Now consider the sum over all the black cells on the hoard. We imagine
this sum to be calculated by columns. Since we are interested only in the
parity of the sum, we are free to sum over all the white cells instead of the
black cells in any given column. Thus, we sum over the black cells in the odd-
numbered columns and over the white cells in the even-numbered columns.
Thinking now in terms of rows, our sum is effectively over all cells (both black
and white) in every second row. This sum is clearly even, since the sum over
all the cells in any row is even.

2. (10th Grade) Solve the system in real numbers

T1+ T2+ -+ Tiger = 1997
m‘f—i—az%—l—--'—i-w‘l‘gw = mi’—i—azg‘—l—--'—i—m?gm.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain;
Pierre Bornsztein, Pontoise, France; Murray S. Klamkin, University of
Alberta, Edmonton, AB; Pavlos Maragoudakis, Pireas, Greece; and Panos E.
Tsaoussoglou, Athens, Greece. We first give the solution by Bornsztein.
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More generally, let n be a positive integer. We will prove that the
unique solution in real numbers of the system

{$1+332+"'+$n = n

oital+otal = oftad+o+al
is (1,1,...,1). Itis easy to see that (1,1,...,1) is a solution of the system.
Conversely, if ¢;, 2, ..., =, are real numbers satisfying the system, then

n n n n
0 = me—Zm?—Zmi—l—n = Z(m?—m?—mi—i—l)
=1 =1 =1 =1

= Z(wi—l)z(asf—{—mi—i—l) = ;(%’—1)2 ((%—i—%) +Z> .

=1
Since, for each 4, we have (z; —1)? ((z; + 3)? + 2) > 0, the equality occurs
onlyife; =1fori=1,2,...,n.
Next we give an alternate approach by Maragoudakis.
By Chebyshev’s inequality, if a; < .-- < a, and b; < -.. < b, then
n(aibs + agbz +---4+anby) > (a1 +az+:-+an)(bs +b2+---+0by,).

Equality occurs if and only if at least one sequence is constant [2001 : 514].
Without loss of generality, we assume that z; < x5 < --. < z1997.
Then 28 < 23 < -.. < a3y,,. Therefore,
1997 (xy+ a5+ -+ 2lg97) > (T1d@24- -+ x1997) (@] + 25+ Falyg,) -
Since 1 + 3 + -+ + 1997 = 1997 and
a] +ah + o+ Tlggr = @+ G+ o+ alggr,
the above inequality becomes equality. Thus,

3 3 3
1] = g = +++ = T1997 or $1=$2="'=$1997-

In either case, 1 = 3 = +++ = x1997 = 1.

3. (10th Grade) Let d(n) denote the greatest odd divisor of the natural

number n. We define the function f : N — IN as follows: f(2n — 1) = 27,

_ 2n
f@2n)=n+ am) forall n € IN.

Find all k& such that f(f(... f(1)...)) = 1997, where f is iterated k times.

Solution by Pierre Bornsztein, Pontoise, France.
Let (xx) be the sequence defined by z; = 1 and zxy1 = f(xx) for all
k > 1. We want to find the integers k such that 1 = 1997.
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The first terms of the sequence (xg) are 1, 2, 3, 4, 6, 5, 8, 12, 10, 7,
16, 24, .... We present them in successive rows, Ry, Rz, Rg3, ..., where R;
contains exactly j terms:

R1:1
R2:2,3
Rs3:4,6,5

R,:8,12,10,7
Rs : 16, 24, 20, 14, 9

We will prove that, for all positive integers 4, j, with j < 4, the 5" number
in R; is (25 — 1)2¢9.

This is clearly true for 2 = 1. Let z > 1 be fixed. Suppose that the
result is true for R;. Then the last term of R; (the one at the right) is 2¢ — 1.
It follows that the first term of R;41 is f(2¢ — 1) = 2° = (2 x 1 — 1)2¢F1-1,
Thus, the desired formula is true for this first term.

Suppose that the result is true for the 5™ number in row R; 1, where
1 < j < i+ 1. Then the following term in R; 44 is:

F((25 - 1)2i+1—j) = (2§ —1)2079 42079+ = (2(G+1) — 1)2i+1—(j+1) )
Therefore, the formula is true for the value 5 + 1. By induction, it is true for

allje{1,2 ...,i+1}.

Thus, the formula is true for all of R; ;. By induction, it is true for all
the rows.

Let a = m2™, where m, n are non-negative integers and m is odd.
Then m2™ = (25 — 1)2¢7 if and only if

0 1 k= m 4+ 1
n=11-J i=n+
2
It follows that a appears exactly once in the sequence, in position T 1in

R, .
If a = 1997, then m = 1997 and n = 0. Thus, £ = ¢ = 999.
Therefore, x;, = 1997 if and only if x;, is the last term of Rgg9, in which case

Ek=14243+---4999 = 999.500 = 499500.

5. (11th Grade) It is known that the equation az® 4+ bx2 + cx +d = 0
with respect to « has three distinct real roots. How many roots does the
equation 4(az® + bx? + cx + d)(3ax + b) = (3ax? + 2bx + ¢)? have?
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Comment by Murray S. Klamkin, University of Alberta, Edmonton, AB.

As stated, the problem is trivial. Since the degree of the given equation
is 4, it must have 4 roots. Perhaps the original version asked for the number
of real roots?

Solution by Bruce Crofoot, University College of the Cariboo,
Kamloops, BC.
Let p(z) = az® + bx? + cx + d, and let

f(x) = 4(ax® + bx? + cx + d)(3ax + b) — (3ax? + 2bx + c)?.

We are told that the equation p(z) = 0 has three distinct real roots, and we
are asked about the roots of the equation f(x) = 0. Clearly, the problem
is interested in real roots only. Note that f(z) = 2p(z)p”(x) — [p'(x)]?.
Hence, f'(x) = 2p(x)p”’(x) = 12ap(x) and f"(x) = 12ap’(x).

Let the roots of p(x) be r1, r2, and r3, where r; < r2 < r3. Since
these roots are distinct, p’(r;) # 0 (for ¢ = 1, 2, 3). Since there are three
roots, the degree of p(x) cannot be less than three. Therefore, a # 0. We
can assume a > 0. (Otherwise we replace p(x) by —p(z), with no effect
on f(x).) Then lim,_,. p(x) = oo and lim,_,_ -, p(xz) = —oo. Hence
p’(r1) > 0,p’(r2) < 0and p’(r3) > 0.

Foreach, f/(r;) = 12ap(r;) = 0, and there are no other points where
f’(x) = 0. Since f”(x) has the same sign as p’(x), we have f’(r1) > 0,
f”(r2) < 0and f”(rg) > 0. Thus, f has local minima at »; and r3, a
local maximum at 7, and no other local maxima or minima. For each %,
f(ri) = —[p’(r;)]*> < 0. Therefore, f(x) < 0 on an interval containing
r1, 2 and r3. Furthermore, lim, .1 f(x) = oo (since the highest-degree
term in f(x) is 3a2x*). All of this implies that the equation f(z) = 0 has
exactly two real roots, one of which is less than r; (Where f(x) changes from
positive to negative) and the other greater than r3 (where f(x) changes from
negative to positive).

6. (11th Grade) Let QT denote the set of all positive rational numbers.
Find all functions f : QT — Q7 such that for allz € Q:

@ f(x+1) = f(z) +1,
(b) f(=?) = (f(=))*.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Pontoise,
France; and Murray S. Klamkin, University of Alberta, Edmonton, AB. We
give the write-up of Bataille.

Let f be any such function. By property (a) and an immediate induction,

we get
fx+n) = f(x)+n forallz € Qtandn € N.

On the other hand,
(f(a: + n))2 = f((a: + n)z) = f(z? + 2nz + n?)
f(a:2 + 2nx) + n?.
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Comparing, we obtain
f(@® +2nz) = f(2®) 4 2nf(z) 1)

forallz € QT and n € IN.
Now, let » = s be any element of Q+, where p € N and q € IN.
From (1), with x = r and n = q, we get f(r? 4 2p) = f(r?) +2qf(r). Then

f@?) +2p = f(r?) +2qf(r),
which yields f(r) = z—z = r. Therefore, f is the identity on Q.

Conversely, the identity of QT clearly satisfies conditions (a) and (b),
whence it is the unique solution.

7. (11th Grade) Find the smallest n such that among any n integers
there are 18 integers whose sum is divisible by 18.

Solved by Pierre Bornsztein, Pontoise, France; and Murray S. Klamkin,
University of Alberta, Edmonton, AB. We give Bornsztein’s account.
The smallest n is 35.

Erdés has proved, more generally, that for any given integer & > 1,
among any 2k — 1 integers there are k integers whose sum is divisible by &
(see [1]). Consider any 2k — 2 integers such that k — 1 of them are equal to
0 modulo &, and the other k — 1 are equal to 1 modulo k. It is easy to see
that, among these 2k — 2 integers, we cannot find k integers whose sum is
divisible by k. Thus, the value 2k — 1 is indeed minimal.

Reference:
[1] R. Graham, The Mathematical Intelligencer, 1979, p. 250.

—_— e r———— ——

Next on the list are solutions to problems of the Tenth Irish Mathe-
matical Olympiad 1997 given [2001 : 6-8].

1. Find (with proof) all pairs of integers (x, y) satisfying the equation

14 1996x + 1998y = =zy.

Solved by Miguel Amengual Covas, Cala Figuera, Mallorca, Spain;
Jean-Claude Andrieux, Beaune, France; Michel Bataille, Rouen, France;
Robert Bilinski, Outremont, QC; Pierre Bornsztein, Pontoise, France;
Murray S. Klamkin, University of Alberta, Edmonton, AB; Pavlos
Maragoudakis, Pireas, Greece; Panos E. Tsaoussoglou, Athens, Greece; and
Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON. We give the
solution and comment by Amengual Covas.
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We find all pairs of integers (x, y) satisfying the more general equation
1+(p—Nz+(p+1)y = zy,
where p > 1 is a prime number. This equation is equivalent to
pr+py = zy+tr—y—1,
which can be rewritten as
Pl -1+ +1) = (z-1)(y+1). M

We observe that (z,y) = (1, —1) is a solution and that no other can-
didates for (x,y) with £ = 1 or y = —1 can satisfy (1).

Now suppose that x # 1 and y # —1, and denote by d the greatest
common divisor of x — 1 and y + 1. We have

zr—1 = du, y+1 = dv, )

where u and v are relatively prime integers. Substituting these expressions
for x — 1 and y + 1 into (1) and dividing both sides by d gives

p(u+v) = duv. 3)

Hence, uv divides the product p(u + v) and is relatively prime to u 4+ v. By
the Fundamental Theorem of Arithmetic, uwv is a divisor of p. Thus,

uv e {]-r _11 D, _p} .

Since p > 0 and d > 0, it follows from (3) that « + v and uv agree in
sign. This leads to the following possibilities:

e u = v = 1. Then, by (3), d = 2p. Substituting these values into (2),
we find that

e u=1,v =p. Thisyieldsd = p + 1 and
r=p+2, y=pp+tl)—1.
e u=1,v= —p. Thisyieldsd = p— 1 and
r=p, y=-plp—-1)-—-1.
e u=p,v=1. Thisyieldsd = p + 1 and
r =pp+1)+1, y = p.
e u=—p,v=1. Thisyieldsd = p—1 and

r=1—-p(p-1), vy = p—2.



95

We conclude that the set of solutions for (x, y) is
{1,-1), @2p+1,2p—-1), (p+2,p(p+1)—-1), (p,—p(p—1)—1),
(p(p+1)+1,p), A—-p(p—-1),p—2)}.

The given problem is the special case when p = 1997.

Comment. For two different methods of finding the integer solutions
of the equation p(z +vy) = xy, see problem 4 of the 315 Spanish Mathemat-
ical Olympiad given in the Corner in the May 2000 number [2000 : 206] and
Problem E:10322 in the Romanian Gazeta Matematica Nr 5/1992,
pp. 186-187.

2. Let ABC be an equilateral triangle. For a point M inside ABC,
let D, E, F be the feet of the perpendiculars from M onto BC, CA, AB,
respectively. Find the locus of all such points M for which ZFDE is a right
angle.

Solution by Michel Bataille, Rouen, France.

A

B D C

For all interior points M whose projections onto BC, CA, AB are D,
E, F, respectively, points B, D, M, F are concyclic (they lie on the circle
with diameter BM). Similarly, M, D, C, E are concyclic. It follows that
/FBM = /FDM and /ZECM = Z/EDM. Therefore,

/FDE = /FBM + /ECM .
Thus,

/FDE = 90° «— /FBM + /ECM = 90°
<~— /MBD+ /MCD = 30°
(since ZB = ZC = 60°)
<— /BMC = 150°.

We may now conclude that the locus of M is the arc of the circle interior to
A ABC subtending 150° on the line segment BC (as shown in the figure).
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3. Find all polynomials p(x) satisfying the equation
(x — 16)p(2x) = 16(x — 1)p(x)

for all «.

Solved by Jean-Claude Andrieux, Beaune, France; Michel Bataille,
Rouen, France; Robert Bilinski, Outremont, QC; Pierre Bornsztein, Pontoise,
France; and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON.
We use the solution by Andrieux.

Posons

p(z) = anz" +an_12" ' +---+ a1z + ao,
avec a,, # 0. Dans (x — 16)p(2x) = 16(x — 1)p(x), I'égalité des coefficients
des termes de plus haut degré donne 2"a,, = 16a,. On en déduit donc que
n = 4. Dol
— 4 3 2
p(x) = aqx® + azx® + axx® + a1 + ao -

On a

(x — 16)p(2z) = 16a4x”® + (8az — 256a4)x* + (4as — 128a3)x?
+(2a; — 64a3)x® + (ap — 32a;1)x — 1640

et
16(x — 1)p(z) = 16a4x® + (16as — 16az)z* + (16az — 16as)x?
+(16a; — 16az)x? + (16a¢ — 16a1)x — 16ay -
On obtient par identification des coefficients
as = 30ay, as = 280ay4, a1 = —960ay, a9 = 1024a,4,
d’ot

p(x) = ag(z* — 3023 4 280x2 — 960x + 1024)
= aq(x —2)(x —4)(x — 8)(x — 16).

L Let a, b, c be non-negative real numbers such that a + b+ ¢ > abe.
Prove that a? + b% + c¢? > abc.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Pontoise,
France; Murray S. Klamkin, University of Alberta, Edmonton, AB;
Pavlos Maragoudakis, Pireas, Greece; Heinz-]Jiirgen Seiffert, Berlin,
Germany; Panos E. Tsaoussoglou, Athens, Greece; and Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON. We give Seiffert’s solution.
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More generally, let n > 2 be an integer and 1 < p < n. We claim that

if a1, az,...,a, are non-negative real numbers such that > a; > [] a;, then
Z a? > pP-D/(r-1) H a; .
(Here and below, all sums and products are extended overz =1, 2, ..., n.)

Proof. We consider two cases:

Case 1. [[a; < n™/(»—1),
From the AM-GM Inequality, we have

Z a? n (H af) v =n (H ai) (p=m)/m H a;

n®=0/0=D [T as,

v

v

because p < n.

Case 2. [[a; > n™/ (1),
Using the Power-Mean Inequality and the condition Y a; > [] a;, we

obtain
1 o\ P 1 1
(gzai) > Ezai > EHai,

which implies

Zaf > nl-P (Hai)p = n'™P (Hai)p_lnai

> pe-1/(n-1) H a;.

This completes the proof of the claim.

Taking n = 3 and p = 2, and renaming a1, az, as by a, b, ¢, we see that
under the conditions given in the proposal, there holds the better inequality
a? 4 b%2 4+ ¢ > /3 abe. This inequality is stronger than the one proposed.

We also give Klamkin’s solution and remarks.
We need only consider two cases.

(1) If a, b, c are all > 1, then clearly a? 4+ 5% +c¢? > a + b+ ¢ > abc.
(2) If at least one of a, b, ¢ < 1 (say ¢ < 1), then a? 4 b2 > ab > abc.

Comment. The same problem without the condition that a, b, ¢ be
non-negative is given as a problem without solution in D. Fomin, S. Genkin,
1. Itenberg, Mathematical Circles, Amer. Math. Soc., 1996, p. 185.

We now conclude the proof by allowing negative numbers. If just one
of a, b, c is negative or if all three are negative, then abc < 0, in which case
the result is immediate. Thus, we may assume that only two of them, say
b and ¢, are negative. Then, letting x = —b and y = —c¢, we have to show
that when a > x + y + azy, we can conclude that a? + 22 4+ y? > azxy.
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The assumed inequality implies that zy < 1. If @ > 1, then a? > axy,
which implies the desired result. If a < 1,thenx < 1andy < 1. In
this case a > = + y > =xy, since the latter inequality can be rewritten as
1> (1 —=x)(1 —y). Thus, we still have a® > axy, with the same conclusion
as before.

5. Let S be the set of all odd integers greater than one. Foreachz € S,
denote by () the unique integer satisfying the inequality
20@) » 5 < 25@+1
Fora, b € S, define
axb = 2°0-1(b_3)ta.

[For example, to calculate 5 * 7 note that 22 < 5 < 23, so that §(5) = 2, and
hence, 5 % 7 = 2271(7 — 3) + 5 = 13. Also 22 < 7 < 23, so that §(7) = 2
and 7% 5 =22"1(5 —3) + 7 =11].

Prove that if a, b, ¢ € S, then
(@ axbe S and
(b) (axb)xc = ax*(bxc).

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Pontoise,
France; Pavlos Maragoudakis, Pireas, Greece; and Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON. We give Wang’s solution.

(a) Since b—3 is even, axb s clearly odd. Also, since 2°(2)—1(b—-3) > 0,
we havea*xb > a > 1. Hence,a*xb € S.

(b) Note first that

(axb)sxc = 2°@¥=1(c_3) 4 (axb)
20(axt)=1(c — 3) 4+ 29~ (b —3) +a (1)
and
ax(bxc) = ax*(2°® 1(c—-3)+b)
20(a)+8(0)=2 (¢ _ 3) 4 29(0)~1(p _3) 4 q. (2)

By (1) and (2) it clearly suffices to show that
d(axb) = 8(a)+d(b) —1. 3)
By definition, 29(2) < q < 29(a)+1 apnd 26(0) < p < 20(O)+1,
Using the inequalities a < 2%(®)+1 and b < 25(®+1 we have

25(a)—1(b _ 3) 4+a < 26(a)—1(b _ 3) + 26(a)+1
= 2%@)~1(p _ 3 44)
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that is,
axb < 20(@)+®) (%)

Similarly, using the inequalities 2°(2) < a and 2°® < b, we have

20@-1(p_3)+a > 2°@-1(p—3)4 20
= 2%@)~1(p_ 34 2)

that is,

axb > 20(@)+®)—-1 5)
From (4) and (5) we have 20(a)+9(0)—=1 < g 4 p < 20(a)+3(b)  Therefore,
S(axb) = 8(a)+8(0b) —1,

which is (3). This completes the proof.

6. Givena positive integer n, denote by o(n) the sum of all the positive
integers which divide n. [For example, 0(3) =1+3 =4,0(6) =1+ 2+
3+6=12,0(12)=1+2+3+4+6+ 12 = 28.]

We say that n is abundant if o(n) > 2n. (Thus, for example, 12 is
abundant). Let a, b be positive integers and suppose that a is abundant.
Prove that ab is abundant.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Pontoise,
France; Pavlos Maragoudakis, Pireas, Greece; and Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON. We give Maragoudakis’ solution.

Let dy, da, ..., di be all the positive integers which divide a. Then
dy +ds + -+ +di > 2a. Also, dib, dab, ..., dpb are all different positive
integers that divide ab. Thus,

o(ab) > dib+dsb+---+dib > 2ab,

whence ab is abundant.

7. ABCD is a quadrilateral which is circumscribed about a circle T
(that is, each side of the quadrilateral is tangent to I"). If /A = /B = 120°,
/D = 90° and BC has length 1, find, with proof, the length of AD.

Solved by Michel Bataille, Rouen, France; Murray S. Klamkin, Univer-
sity of Alberta, Edmonton, AB; and Pavlos Maragoudakis, Pireas, Greece.
We give the solution by Bataille.
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B
I J
A
L
(0]
D K C

Let O be the centre of T, and let I, J, K, and L be the points at which
AB, BC,CD, and DA touch T, respectively. Triangle I BJ is isosceles with
/B = 120°. Therefore, /BIJ = /BJI = 30°;, whence, ZOIJ = 60°. It
follows that AIOJ is equilateral and, consequently, IJ = OI = OJ = R,

the radius of I". Since \/TE = cos 30° = %, we get BJ = i.

BJ V3

Now, observing that OK DL is a square and that ATOJ and AIOL
are equilateral triangles, we obtain /ZKOJ = 150°. Then ZOCJ = 15°;

whence, 2 — /3 = tan 15° = % This implies that CJ = R(2 + v/3). The
relation 1 = BC = BJ + CJ now yields R = L Using DL = R
R 4+2v3 R
and AL = BJ = —, we can compute AD = AL + DL = — + R, which
/3 P + 73 +
readily gives AD = \/52_ L
8. Let A be a subset of {0, 1, 2, 3, ..., 1997} containing more than

1000 elements. Prove that either A contains a power of 2 (that is, a number
of the form 2* with k a non-negative integer) or there exist two distinct
elements a, b € A such that a + b is a power of 2.

Solved by Pierre Bornsztein, Pontoise, France; and Edward T.H. Wang,
Wilfrid Laurier University, Waterloo, ON. We give Wang’s solution.

Let S = {0, 1, 2,...,1997}. We prove the following stronger result:
if A is a subset of S containing more than 997 elements, then A contains
a power of 2, or A contains two distinct elements a, b such that a + b is a
power of 2. Furthermore, the bound 997 is the best possible.

Suppose A C S does not have the described property. We will show
that |A| < 997.

Note that 21° = 1024 < 1997 < 2048 = 2. We arrange the numbers
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in S — {0, 1, 2, 8, 32,1024} into an array as follows:

3 13|14 50 51 1997
4 12|15 49 52 1996
5 11|16 48 53 1995
6 10|17 47 54 1994
7 9 |18 46 55 1993
31 33
1023 1025
Let C; denote the " column of the array (i =1,2,...,6). Note that in

C1 U Cs5, the two numbers in the same row add up to 16; in C3 U Cy, the two
numbers in the same row add up to 64; and in C5 U Cg, the two numbers in
the same row add up to 2048. Since 16, 64, and 2048 are powers of 2, and
since |C1| = |C2| = 5, |C3| = |C4| = 18, and |C5| = |Cs| = 973, we have
|A N (Cl U Cz)l S 5, |A N (C3 U C4)| S 18, and |A n (C5 U C6)| S 973.
Allowing 0 € A, we find that |[A| <145+ 18 + 973 = 997, as claimed.

Furthermore, if we take A = {0} U C2 U C4 U Cg, then clearly
|A| = 997, and it is easy to check that A does not contain a power of 2
or two elements which add up to a power of 2. Thus, the upper bound of 997
is the best possible.

Remark: A very interesting problem “deserving” a nice solution, which
hopefully is from “The Book” (by Erdés’ definition).

0. Let S be the set of all natural numbers n satisfying the following
conditions:

(a) n has 1000 digits,

(b) all the digits of n are odd, and

(c) the absolute value of the difference between adjacent digits of n is 2.
Determine the number of distinct elements of S.

Solved by Michel Bataille, Rouen, France; and Pierre Bornsztein,
Pontoise, France. We give Bornsztein’s solution.

Let k be a positive integer. Denote by Sy the set of all k-digit natural
numbers n satisfying (b) and (c). Let Uy be the set of elements of Sj, ending
in 1 or 9, V, the set of elements of S, ending in 3 or 7, and W}, the set
of elements of Sy ending in 5. Let s, = |Sk|, ux = |Uk|, v = |V&|, and
Wg = |Wk|

Note that each element of Sk, is obtained from an element of Sy, by
adding an odd number at the right of its decimal expansion, following (c).
Any n € U, may be used to construct exactly one number of Sk, because
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the only possible digit that may be added to n is 3 if the rightmost digit of
n is 1, and 7 if the rightmost digit of n is 9. Then we obtain u; elements
belonging to Vi41. Similarly, any n € V;, may be used to construct exactly
one number of Ug41 and one number of Wy 4; and any n € Wj may be
used to construct exactly two numbers of Vi 1.

Since n cannot belong to more than one of the cases above, the con-
struction leads to different numbers in Sk1. Thus,

Upt1 = Vg
Vg1 = Uk + 2wk
Wey1 = Uk

with uy = vy = 2and w; = 1. For k > 2, we have up, = wr = vp_1,
which leads to vgt+1 = 3wi_1. Therefore, vapr1 = 3*v; = 2 x 3F and
V2k42 = 3k’U2 =4 X 3k for all k Z 0. Then U2k+1 = W2k+1 = 4 x 3#—1 and
Uz = Wwop = 2 X 3¥~1forall k > 1.

We deduce that, forall £ > 1,

sa = 2x314axsgkTlp2x3t = gx3k?t,
Sakt1 = 4x3F P4 2x3Fpaxs3l = 14x31.

In particular, s1g00 = 8 x 3499,

10. ret p be a prime number and n a natural number, and let

T ={1,2,3,...,n}. Then n is called p-partitionable if there exist non-
empty subsets Ty, Tz, ..., Tp of T such that

ODT=T1UT>U---UTp,

(if) Th, T, ..., Tp are disjoint (that is, T; N Tj is the empty set for all
1, J with 4 # 5), and

(iii) the sum of the elements in T; is the same for: =1, 2, ..., p.

[For example, 5 is 3-partitionable since, if we take T3 = {1, 4},

T, = {2, 3}, Ts = {5}, then (i), (ii) and (iii) are satisfied. Also 6 is
3-partitionable since, if we take Ty = {1, 6}, Tx = {2, 5}, T3 = {3, 4},
then (i), (ii) and (iii) are satisfied.]

(a) Suppose that n is p-partitionable. Prove that p divides n or n + 1.
(b) Suppose that n is divisible by 2p. Prove that n is p-partitionable.

Solved by Michel Bataille, Rouen, France; Pierre Bornsztein, Pontoise,
France; and Edward T.H. Wang, Wilfrid Laurier University, Waterloo, ON.
We give Bataille’s solution.

(a) Denote by s(A) the sum of the elements of the finite subset A of IN.
Then

w = s(T) = ZS(Ti) = pm,

=1
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where m = s(T3),i = 1, 2, ..., p. Thus, 2pm = n(n + 1). The prime
number p, which divides the product n(n + 1), must divide n or n + 1.

(b) Let k be the integer such that n = 2pk, and set

Tn = {1,2,....,k}Uu{(2p—1k+1, (2p—1)k+2,...,2pk},
T, = {k+1,k+2,...,2k}U
{@2p—2)k+1,(2p—2)k+2,...,(2p — 1)k},
:Ijj+1 = {Jk+1r°"!(]+1)k}u{(2p_.7)k+1y°°'r(2p_(.7_1))k}r
T, = {(p—1Vk+1,...,pk,pk+1,pk+2,..., (p+1)k}.
Now we have s(T;) = k(2pk + 1) fori =1, 2, ..., p, and clearly (i) and (ii)

are also satisfied. It follows that n is p-partitionable.

—_— N~ S ————

That completes this number of the Corner. This is Olympiad Season—
send me Olympiad Contests as well as your nice solutions and generaliza-
tions.

——— | NS



