TOM BOHMAN, Carnegie Mellon University, Department of Mathematical Sciences
Anti-Ramsey Thresholds
We call an edge-coloring of a graph a k-coloring if it uses no more than k colors and k-bounded if it uses no color more than k times. We call a subgraph homogeneous if all of its edges are colored the same and heterogeneous if all of its edges are colored differently.
A classical Ramsey theorem states that for every k and n there exists an m such that any k-coloring of the edges of K_{m} contains a homogeneous K_{n}. Rodl et al. proved the following anti-Ramsey theorem: for every k and every n there exists an m such that any k-bounded coloring of the edges of K_{m} contains a heterogeneous K_{n}.
Let H be a fixed connected graph that contains a cycle. In this talk we establish the threshold for the property that every k-bounded coloring of the random graph $G_{n, p}$ has a heterogenous copy of H. We also discuss the behavior of the probability that $G_{n, p}$ has this property for p close to the threshold and pose a conjecture for the threshold when H is a tree.
This is joint work with Alan Frieze, Oleg Pikhurko and Cliff Smyth.

