A naturally occurring question in cryptography is how well the composition of simple permutations drawn from a simple distribution resembles a random permutation. Although such constructions are a common source of security for block ciphers like DES and AES, their mathematical justification (or lack thereof) is troubling.
Motivated by this question, we study the random composition of a small family of $O\left(n^{3}\right)$ simple permutations on $\{0,1\}^{n}$. Specifically we ask how many randomly selected simple permutations need be composed to yield a permutation that is close to k-wise independent. We improve on previous results and show that up to a polylogarithmic factor, $n^{2} k^{2}$ compositions of random permutations from this family suffice. In addition, our results give an explicit construction of a degree $O\left(n^{3}\right)$ Cayley graph of the alternating group of 2^{n} objects with a spectral gap $\Omega\left(1 /\left(n^{2} 2^{n}\right)\right)$, which is a substantial improvement over previous constructions.
This question is essentially about the rapid mixing of a certain Markov chain, and the proofs are based on the comparison technique.

