ROBERT ROBINSON, University of Georgia, Athens, GA
Finding Hamilton Cycles in Random Cubic Graphs
We consider the problem of finding a Hamilton cycle in a graph G drawn at random from the set of labeled cubic graphs of order $2 n$. In 1996 Frieze et al. showed that with high probability the expected number of independent random 2-factors of G needed to yield a Hamilton cycle is $O\left(n^{5 / 2}\right)$.
A more careful analysis reveals that over a class containing almost all cubic graphs (as $n \rightarrow \infty$) this expectation is asymptotic to $C n^{1 / 2}$ for a constant $C=0.56802636 \ldots$ This suggests an algorithm which intuitively should find a Hamilton cycle in time $O\left(n^{3 / 2}\right)$ with high probability. Supporting evidence for such performance is provided by data from experiments carried out by Mei Xue while an M.S. student at The University of Georgia.

