IGNACIO URIARTE-TUERO, University of Toronto

Muckenhoupt A_p weights, BMO, distance functions and Hardy-Sobolev inequalities

Vasin (for n=1) and Anderson, Lehrbäck, Mudarra, and Vähäkangas (for n>1) provided a geometric characterization of the sets $E \subset \mathbb{R}^n$ so that $w=dist(\cdot,E)^{-\alpha}$ is a Muckenhoupt A_1 weight for some $\alpha>0$. We provide a geometric characterization of the sets $E \subset \mathbb{R}^n$ (which we call median porous sets) so that $w=dist(\cdot,E)^{-\alpha}$ is a Muckenhoupt A_p weight for some $\alpha>0$ (given any 1).

Given $1 , we also find the precise range of exponents <math>\alpha$ so that $w = dist(\cdot, E)^{-\alpha} \in A_p$ (in analogy to the p = 1 case done by Anderson, Lehrbäck, Mudarra, and Vähäkangas).

With our characterization we prove that $\mathbb{R}^n \setminus E$ supports a Hardy-Sobolev inequality if E is an appropriate median porous set. All previous such results that we are aware of make the strictly stronger assumption that the set E is porous. The proofs rely on a new median-value characterization of BMO. Joint work with Marcus Pasquariello.