CHENJIAN WANG, The University of British Columbia

Pinned patterns and density theorems in \mathbb{R}^d

We consider the abundance property of pinned k-point patterns occurring in $E \subseteq \mathbb{R}^d$ with positive upper density $\delta(E)$. We show that for any fixed k-point pattern V, there is a set E with positive upper density such that E avoids all sufficiently large affine copies of V, with one vertex fixed at any point in E. However, we obtain a positive quantitative result, which states that for any fixed E with positive upper density, there exists a k-point pattern V, such that for any $x \in E$, a carefully chosen pinned scaling factor set has upper density $\geq \tilde{\varepsilon} > 0$, where constant $\tilde{\varepsilon}$ depends on k,d and $\delta(E)$.