PETER DANZIGER, Toronto Metropolitan University

Packing designs with large block size

Given positive integers v, k, t and λ with $v \geq k \geq t$, a packing design $\operatorname{PD}_{\lambda}(v, k, t)$ is a pair (V, \mathcal{B}) , where V is a v-set and \mathcal{B} is a collection of k-subsets of V such that each t-subset of V appears in at most λ elements of \mathcal{B} . When $\lambda = 1$, a $\operatorname{PD}_1(v, k, t)$ is equivalent to a binary code with length v, minimum distance 2(k-t+1) and constant weight k. The maximum size of a $\operatorname{PD}_{\lambda}(v, k, t)$ is called the packing number, denoted $\operatorname{PDN}_{\lambda}(v, k, t)$.

We consider packing designs with k large relative to v. In this case, we extend the second Johnson bound to arbitrary λ and show that this bound is tight. Specifically, we prove that for a positive integer n, $\mathsf{PDN}_{\lambda}(v,k,t) = n$ whenever $nk - (t-1)\binom{n}{\lambda+1} \le \lambda v < (n+1)k - (t-1)\binom{n+1}{\lambda+1}$. For fixed t and λ , this determines the value of $\mathsf{PDN}_{\lambda}(v,k,t)$ when k is large with respect to v. We also extend this result to directed packings, by showing that if no point appears in more than three blocks, then the blocks of a $\mathsf{PD}_2(v,k,2)$ can be directed so that no ordered pair occurs more than once.

Joint work with Andrea Burgess, Daniel Horsley and Muhammad Tariq Javed