ALEX BRUDNYI, University of Calgary

Runge-Type Approximation Theorem for Banach-valued H^{∞} Functions on a Polydisk

Let $\mathbb{D}^n \subset \mathbb{C}^n$ be the open unit polydisk, $K \subset \mathbb{D}^n$ be an *n*-ary Cartesian product of planar sets, and $\widehat{U} \subset \mathfrak{M}^n$ be an open neighbourhood of the closure \overline{K} of K in \mathfrak{M}^n , where \mathfrak{M} is the maximal ideal space of the algebra H^∞ of bounded holomorphic functions on \mathbb{D} . Let X be a complex Banach space and $H^\infty(V, X)$ be the space of bounded X-valued holomorphic functions on an open set $V \subset \mathbb{D}^n$. We show that any $f \in H^\infty(U, X)$, where $U = \widehat{U} \cap \mathbb{D}^n$, can be uniformly approximated on K by ratios h/b, where $h \in H^\infty(\mathbb{D}^n, X)$ and b is the product of interpolating Blaschke products such that $\inf_K |b| > 0$. Moreover, if \overline{K} is contained in a compact holomorphically convex subset of \widehat{U} , then h/b above can be replaced by h for any f. The results follow from a new constructive Runge-type approximation theorem for Banach-valued holomorphic functions on open subsets of \mathbb{D} and extend the fundamental results of Suarez on Runge-type approximation for analytic germs on compact subsets of \mathfrak{M} . They can also be applied to the long-standing corona problem which asks whether \mathbb{D}^n is dense in the maximal ideal space of $H^\infty(\mathbb{D}^n)$ for all $n \ge 2$.