SAROBIDY RAZAFIMAHATRATRA, Fields Institute

The intersection density of transitive groups of degree 3p

Given a finite transitive group $G \leq \text{Sym}(\Omega)$, a subset $\mathcal{F} \subset G$ is *intersecting* if for any $g, h \in G$, there exists $\omega \in \Omega$ such that $\omega^g = \omega^h$. The *intersection density* of G is the rational number

$$\rho(G) := \max\left\{\frac{|\mathcal{F}|}{|G|/|\Omega|} : \mathcal{F} \subset G \text{ is intersecting}\right\}.$$

In 2022, Meagher asked whether $\rho(G) \in \{1, \frac{3}{2}, 3\}$ for any transitive group $G \leq \text{Sym}(\Omega)$ of degree $|\Omega| = 3p$, where $p \geq 5$ is an odd prime. Except for the cases where p = q + 1 is a Fermat prime and Ω admits a unique *G*-invariant partition \mathcal{B} , whose blocks are of size 3, such that the induced action of *G* on \mathcal{B} is isomorphic to $\text{PSL}_2(q)$, I will answer Meagher's question positively for imprimitive groups admitting a normal block system.

Joint work with Roghayeh Maleki.