KIM SOOYEONG, University of guelph

Perfect state transfer in a graph and its line graph

In the study of continuous quantum walks on graphs, perfect state transfer between \mathbf{x} and \mathbf{y} has been well-explored when \mathbf{x} and \mathbf{y} are standard basis vectors, specifically \mathbf{e}_v and \mathbf{e}_w corresponding to vertices v and w. Chen and Chris extended this by investigating cases where $\mathbf{x} = \mathbf{e}_a \pm \mathbf{e}_b$ and $\mathbf{y} = \mathbf{e}_c \pm \mathbf{e}_d$.

This led us to a graph-theoretic question: Given a graph G that permits perfect state transfer between $\mathbf{e}_a + \mathbf{e}_b$ and $\mathbf{e}_c + \mathbf{e}_d$ for edges $\{a,b\}$ and $\{c,d\}$, does its line graph $\ell(G)$ also exhibit perfect state transfer between \mathbf{e}_v and \mathbf{e}_w , where v and w correspond to the edges $\{a,b\}$ and $\{c,d\}$, respectively? Moreover, is the converse true? We will address this question and provide relevant examples.