EDUARDO DUENEZ, University of Texas at San Antonio Structures of random variables and stability of Orlicz spaces

Describing spaces of random variables on a probability space (Ω, \mathbb{P}) as first-order real-valued structures is customarily done imposing an *a priori* restriction to bounded variables in [0,1] (say) or else by generally treating any such space as an * \mathbb{R} valued first-order structure (in the language of nonstandard analysis). We introduce classes of *real*-valued structures that faithfully capture the essence of the classical function spaces $L^p(\Omega)$ and the Orlicz spaces $L^{\phi}(\Omega)$ (with values in \mathbb{R} or in some Banach space ($\mathcal{X}, \|\cdot\|$)). This perspective casts new light on some foundation aspects of measure theory (e.g., Radon-Nykodim decompositions and the Riesz Representation Theorem) and allows for simple proofs of classical results, including the stability of L^p and of L^{ϕ} (when ϕ satisfies a " Δ_2 -condition" and the Banach space \mathcal{X} is itself stable).