BORYS KADETS, University of Georgia

Subspace configurations and low degree points on curves
The arithmetic irrationality a. $\operatorname{irr}_{k} X$ of a curve X over a number field k is the smallest integer d such that X has infinitely many points of degree d. Hyperelliptic curves $y^{2}=f(x)$ of genus $g \geqslant 2$ have a. $\operatorname{irr}_{k}=2$. Similarly, double covers of elliptic curves of positive rank have arithmetic irrationality 2; conversely, Harris and Silverman have shown that a curve with a.irr ${ }_{k} X=2$ is geometrically hyperelliptic or bielliptic. Soon after Abramovich and Harris proved that a similar statement holds for curves with a. $\operatorname{irr}_{k} X=3$. However, Debarre and Fahlaoui discovered that for all $d \geqslant 4$ there are families of curves with a. $\operatorname{irr}_{k} X=d$ which do not admit degree d or less maps to other curves. The existence of these Debarre-Fahlaoui curves makes it difficult to obtaining general results on curves with a. $\operatorname{irr}_{k} X=d$.
I will report on a recent joint work with Isabel Vogt (arXiv:2208.01067), in which we prove some results towards classifying curves of arithmetic irrationality d. We show that this classification problem can be reduced to a study of curves of low genus, and use this reduction to obtain a classification for $d \leqslant 5$. These results are obtained by studying a new discrete-geometric invariant - the subspace configuration - attached to curves of arithmetic irrationality d.

