SEYED AHMAD MOJALLAL, University of Regina

Distribution of Laplacian eigenvalues of graphs

Let G be a graph of order n with m edges. Also let $\mu_1 \ge \mu_2 \ge \cdots \ge \mu_{n-1} \ge \mu_n = 0$ be the Laplacian eigenvalues of graph G and let $\sigma = \sigma(G)$ $(1 \le \sigma \le n)$ be the largest positive integer such that $\mu_\sigma \ge \frac{2m}{n}$. In this talk, we show that $\mu_2(G) \ge \frac{2m}{n}$ for almost all graphs. Moreover, we characterize the extremal graphs for any graphs. We also provide the answer to Problem 3 in [Distribution of Laplacian eigenvalues of graphs, Linear Algebra Appl. 508 (2016), 48–61], that is, the characterization of all graphs with $\sigma = 1$. Moreover, we present a few relations between σ and other graph invariants, in particular, we give a Nordhaus–Gaddum-type result for σ .