PAULA KIMMERLING, Washington State University Rank of Average Mixing Matrix in Dutch Windmill Graphs

Let X be a graph. We associate this graph with a continuous-time quantum walk by using a transition matrix $U(t) = \exp itA$, where A is the adjacency matrix. This allows us to create the average mixing matrix \hat{M} which is time-independent and gives some sense of average probability values and long-term behavior. \hat{M} has previously been studied on trees and graphs with distinct eigenvalues. Our focus is on Dutch Windmill graphs which all have repeated eigenvalues. In this talk we will show that \hat{M} has "half-rank" and why, including the relationships between the spectra of Dutch Windmill graphs and path/star graphs.