THEO BENDIT, University of British Columbia, Okanagan *Doubleton Projections in Real Hilbert Spaces*

Suppose X is a real Hilbert space. We say a set $C \subseteq X$ admits a Continuous Doubleton Projection if there is a point $x \in X \setminus C$ that projects onto exactly two points of C, and that the metric projection map P_C is upper-semicontinuous at x.

We present two conditions equivalent to C failing to admit a doubleton projection: a property related to (but stronger than) connectedness called B° -Connectedness, and a property we call Locally-Determined Set Curvature.

These results tell us some non-trivial geometric facts about Chebyshev sets in real Hilbert Spaces. Such sets are the subject of a long-standing open problem known as the Chebyshev Conjecture.