## RAGHAV VENKATRAMAN, Courant Institute

Least Wasserstein Distance Between Disjoint Shapes With Perimeter Regularization
We prove the existence of global minimizers to the double minimization problem

$$
\inf \left\{P(E)+\lambda W_{p}\left(\mathcal{L}^{n}\left\lfloor E, \mathcal{L}^{n}\lfloor F):|E \cap F|=0,|E|=|F|=1\right\}\right.\right.
$$

where $P(E)$ denotes the perimeter of the set $E, W_{p}$ is the $p$-Wasserstein distance between Borel probability measures, and $\lambda>0$ is arbitrary. The result holds in all space dimensions, for all $p \in[1, \infty)$, and for all positive $\lambda$. This answers a question of Buttazzo, Carlier, and Laborde.

