DMITRY RYABOGIN,

On an equichordal property of a pair of convex bodies

Let $d \ge 2$ and let K and L be two convex bodies in \mathbb{R}^d such that $L \subset \operatorname{int} K$ and the boundary of L does not contain a segment. If K and L satisfy the (d+1)-equichordal property, i.e., for any line l supporting the boundary of L and the points $\{\zeta_{\pm}\}$ of the intersection of the boundary of K with l,

$$\operatorname{dist}^{d+1}(L \cap l, \zeta_{+}) + \operatorname{dist}^{d+1}(L \cap l, \zeta_{-}) = 2\sigma^{d+1}$$

holds, where the constant σ is independent of l, does it follow that K and L are concentric Euclidean balls? We prove that if K and L have C^2 -smooth boundaries and L is a body of revolution, then K and L are concentric Euclidean balls.