DMITRY RYABOGIN,

On an equichordal property of a pair of convex bodies
Let $d \geq 2$ and let K and L be two convex bodies in \mathbb{R}^{d} such that $L \subset$ int K and the boundary of L does not contain a segment. If K and L satisfy the $(d+1)$-equichordal property, i.e., for any line l supporting the boundary of L and the points $\left\{\zeta_{ \pm}\right\}$of the intersection of the boundary of K with l,

$$
\operatorname{dist}^{d+1}\left(L \cap l, \zeta_{+}\right)+\operatorname{dist}^{d+1}\left(L \cap l, \zeta_{-}\right)=2 \sigma^{d+1}
$$

holds, where the constant σ is independent of l, does it follow that K and L are concentric Euclidean balls? We prove that if K and L have C^{2}-smooth boundaries and L is a body of revolution, then K and L are concentric Euclidean balls.

