Coxeter-James Prize
 Prix Coxeter-James
 (Org: Luke Postle (University of Waterloo))

LUKE POSTLE, University of Waterloo
 On Hadwiger's Conjecture

In 1943, Hadwiger conjectured that every graph with no K_{t} minor is $(t-1)$-colorable for every $t \geq 1$. Hadwiger's Conjecture is a vast generalization of the Four Color Theorem and one of the most important open problems in graph theory. Only the cases when t is at most 6 are known. In the 1980s, Kostochka and Thomason independently proved that every graph with no K_{t} minor has average degree $O\left(t(\log t)^{0.5}\right)$ and hence is $O\left(t(\log t)^{0.5}\right)$-colorable. In a recent breakthrough, Norin, Song, and I proved that every graph with no K_{t} minor is $O\left(t(\log t)^{c}\right)$-colorable for every $c>0.25$, Subsequently I showed that every graph with no K_{t} minor is $O\left(t(\log \log t)^{6}\right)$-colorable. Delcourt and I improved upon this further by showing that every graph with no K_{t} minor is $O(t \log \log t)$-colorable. Our main technical result yields this as well as a number of other interesting corollaries. A natural weakening of Hadwiger's Conjecture is the so-called Linear Hadwiger's Conjecture that every graph with no K_{t} minor is $O(t)$-colorable. We prove that Linear Hadwiger's Conjecture reduces to small graphs. In 2005, Kühn and Osthus proved that Hadwiger's Conjecture for the class of $K_{s, s}-$ free graphs for any fixed positive integer $s \geq 2$. Along this line, we show that Linear Hadwiger's Conjecture holds for the class of K_{r}-free graphs for every fixed r.

