FILIP NAJMAN, University of Zagreb
Quadratic points on bielliptic modular curves $X_{0}(n)$
Bruin and Najman, Ozman and Siksek and Box described all the quadratic points on the modular curves of genus $2 \leq$ $g\left(X_{0}(n)\right) \leq 5$. Since all the hyperelliptic curves $X_{0}(n)$ are of genus ≤ 5 and as a curve can have infinitely many quadratic points only if it is either of genus ≤ 1, hyperelliptic or bielliptic, the question of describing the quadratic points on the bielliptic modular curves $X_{0}(n)$ naturally arises; this question has recently also been posed by Mazur.
We answer Mazur's question completely and describe the quadratic points on all the bielliptic modular curves $X_{0}(n)$, for which this has not been done already. The values of n that we deal with are $n=60,62,69,83,89,92,94,95,101,119$ and 131 ; the curves $X_{0}(n)$ are of genus up to 11 . The two main methods we use is Box's relative symmetric Chabauty and an application of a moduli description of \mathbb{Q}-curves of degree d with an independent isogeny of degree m, which reduces the problem to finding the rational points on several quotients of modular curves. This is joint work with Borna Vukorepa.

