ANWESH RAY, University of British Columbia

Rational points on algebraic curves in infinite towers of number fields
We study a natural question in the Iwasawa theory of algebraic curves of genus >1.
Let X be a smooth, projective, geometrically irreducible curve X defined over a number field K of genus $g>1$, such that the Jacobian has good ordinary reduction at the primes above p. Fix an odd prime p and for any integer $n>1$, let K_{n} denote the degree- p^{n} extension of K contained in $K\left(\mu_{p^{n+1}}\right)$. We prove explicit results for the growth of $\# X\left(K_{n}\right)$ as $n \rightarrow \infty$. When the Jacobian of X has rank zero and the associated adelic Galois representation has big image, we prove an explicit condition under which $X\left(K_{n}\right)=X(K)$ for all n. We show that this condition is satisfied for 100% of primes p at which the Jacobian of X has good ordinary reduction.

