ALEX BARRIOS, Carleton College
 Elliptic curves with non-trivial isogeny

Let K be a field and suppose E and E^{\prime} are isogenous non-isomorphic elliptic curves defined over K. Then there is an isogeny $\pi: E \rightarrow E^{\prime}$ defined over K such that $\operatorname{ker} \pi \cong \mathbb{Z} / n \mathbb{Z}$ for some integer $n>1$. In particular, the pair (E, $\operatorname{ker} \pi$) is a noncuspidal K-rational point of $X_{0}(n)$. When $n \geq 2$ and $X_{0}(n)$ has genus 0 , we have the Klein-Fricke parameterizations which parameterize the j-invariants of the K-rational points of $X_{0}(n)$. By using these parameterizations, Cremona, Watkins, and Tsukazaki gave an algorithm to compute the isogeny class of an elliptic curve E / \mathbb{Q}. In this talk, we discuss an improvement of this algorithm by means of an explicit classification of isogeny graphs for elliptic curves E / \mathbb{Q} that admit a non-trivial isogeny. We conclude by discussing joint work with Chimarro, Roy, Sahajpal, Tobin, and Wiersema, which uses this explicit classification to investigate how the Kodaira-Néron types of elliptic curves change under 2- or 3-isogeny.

