ALEXANDRE GIROUARD, Université Laval

Planar domains with prescribed perimeter and large Steklov spectral gap must collapse to a point
In 2014, Gerasim Kokarev proved that the first nonzero Steklov eigenvalue of a compact surface Ω of genus 0 satisfies $\bar{\sigma}_{1}(\Omega):=\sigma_{1}(\Omega)|\partial \Omega| \leq 8 \pi$. In a recent joint work with Jean Lagacé, we proved that this inequality is sharp by constructing a sequence of domains in the sphere $\mathbb{S}^{2} \subset \mathbb{R}^{3}$ that saturates it. In an ongoing project with Mikhail Karpukhin and Jean Lagacé, we went further and proved the saturation of Kokarev inequality for planar domains: there exists a sequence $\Omega^{\epsilon} \subset \mathbb{R}^{2}$ such that $\bar{\sigma}_{1}\left(\Omega^{\epsilon}\right) \xrightarrow{\epsilon \rightarrow 0} 8 \pi$. In this talk I will present a quantitative improvement of Kokarev's inequality, which sheds light on geometric and topological properties of such maximizing sequences for $\bar{\sigma}_{1}$. A particularly striking consequence is that any sequence $\Omega^{\epsilon} \subset \mathbb{R}^{2}$ with prescribed perimeter $\left|\Omega^{\epsilon}\right|=1$ and $\sigma_{1}\left(\Omega^{\epsilon}\right) \xrightarrow{\epsilon \rightarrow 0} 8 \pi$ accumulates at a point: Diameter $\left(\Omega^{\epsilon}\right) \xrightarrow{\epsilon \rightarrow 0} 0$. Another consequence is a quantitative lower bound on the number of connected components of the boundary $\partial \Omega$, which must grow to $+\infty$.

