SACHA MANGEREL, Centre de Recherche Mathématiques

Arrangements of Consecutive Values of Real Multiplicative Functions
We will discuss the following problem: given a multiplicative function $f: \mathbb{N} \rightarrow \mathbb{R}$ and a k-tuple of "admissible", distinct non-negative integer shifts a_{1}, \ldots, a_{k}, what is the probability that a given $n \in \mathbb{N}$ satisfies $f\left(n+a_{1}\right) \leq \cdots \leq f\left(n+a_{k}\right)$? Randomness heuristics suggest that such a pattern occur with probability $1 / k$! for a "generic" function f. Under certain assumptions on f we will give both conditional and unconditional results in this direction for a large collection of examples, in particular the Ramanujan τ function as well as sequences of Fourier coefficients of many non-CM, arithmetically normalized Hecke eigencusp forms with trivial nebentypus.

