DIMITRIS KOUKOULOPOULOS, Université de Montréal
How concentrated can the divisors of a typical integer be?
The Delta function measures the concentration of the sequence of divisors of an integer. Specifically, given an integer n, we write $\Delta(n)$ for the maximum over y of the number of divisors of n lying in the dyadic interval $[y, 2 y]$. It was introduced by Hooley in 1979 because of its connections to various problems in Diophantine equations and approximation. In 1984, Maier and Tenenbaum proved that $\Delta(n)>1$ for almost all integers n, thus settling a 1948 conjecture due to Erdős. In subsequent work, they proved that $(\log \log n)^{c+o(1)} \leq \Delta(n) \leq(\log \log n)^{\log 2+o(1)}$, where $c=(\log 2) / \log \left(\frac{1-1 / \log 27}{1-1 / \log 3}\right) \approx 0.33827$ for almost all integers n. In addition, they conjectured that $\Delta(n)=(\log \log n)^{c+o(1)}$ for almost all n. In this talk, I will present joint work with Kevin Ford and Ben Green that disproves the Maier-Tenenbaum conjecture by replacing the constant c in the lower bound by another constant $c^{\prime}=0.35332277 \ldots$ that we believe is optimal. We also prove analogous results about permutations and polynomials over finite fields by reducing all three cases to an archetypal probabilistic model.

