Given the congruence subgroup $\Gamma = \Gamma_0(N)$ of $SL_3(\mathbb{Z})$ and the real quadratic field $E = \mathbb{Q}(\sqrt{d})$, we compare the homology of Γ with coefficients in the Steinberg modules of E and Q. This leads to a connecting homomorphism whose image H is a "natural" (in particular Hecke-stable) subspace of $H^3(\Gamma, Q)$. The units O_E^\times are the main ingredient in the construction of elements of H. We performed computations to determine H for a variety of levels $N \leq 169$ and all $d \leq 10$. On the basis of the results we conjecture exactly what the image should be in general. This is joint work with Dan Yasaki.