COLIN INGALLS, Carleton University

Explicit coverings of families of elliptic surfaces by squares of curves

We show that, for each n > 0, there is a family of elliptic surfaces which are covered by the square of a curve of genus 2n + 1, and whose Hodge structures have an action by $\mathbb{Q}(\sqrt{-n})$. By considering the case n=3, we show that one particular family of K3 surfaces are covered by the square of genus 7. Using this, we construct a correspondence between the square of a curve of genus 7 and a general K3 surface in \mathbb{P}^4 with 15 ordinary double points up to isogeny. This gives an explicit proof of the Kuga-Satake-Deligne correspondence for these K3 surfaces and any K3 surfaces isogenous to them, and further, a proof of the Hodge conjecture for the squares of these surfaces. We conclude that the motives of these surfaces are Kimura-finite. Our analysis gives a birational equivalence between a moduli space of curves with additional data and the moduli space of these K3 surfaces with a specific elliptic fibration. This is joint work with Adam Logan and Owen Patashnick.