BENOÎT CORSINI, McGill University

The height of Mallow trees
Random binary search trees are obtained by recursively inserting the elements $\sigma(1), \sigma(2), \ldots, \sigma(n)$ of a uniformly random permutation σ of $[n]=\{1, \ldots, n\}$ into a binary search tree data structure. Devroye (1986) proved that the height of such trees is asymptotically of order $c^{*} \log n$, where $c^{*}=4.311 \ldots$ is the unique solution of $c \log ((2 e) / c)=1$ with $c \geq 2$. Here, we study the structure of binary search trees $T_{n, q}$ built from Mallows permutations. A Mallows (q) permutation is a random permutation of $[n]=\{1, \ldots, n\}$ whose probability is proportional to $q^{\operatorname{Inv}(\sigma)}$, where $\operatorname{Inv}(\sigma)=\#\{i<j: \sigma(i)>\sigma(j)\}$. This model generalizes random binary search trees, since $\operatorname{Mallows}(q)$ permutations with $q=1$ are uniformly distributed. The laws of $T_{n, q}$ and $T_{n, q^{-1}}$ are related by a simple symmetry (switching the roles of the left and right children), so it suffices to restrict our attention to $q \leq 1$.
We show that, for $q \in[0,1]$, the height of $T_{n, q}$ is asymptotically $(1+o(1))\left(c^{*} \log n+n(1-q)\right)$ in probability. This yields three regimes of behaviour for the height of $T_{n, q}$, depending on whether $n(1-q) / \log n$ tends to zero, tends to infinity, or remains bounded away from zero and infinity. In particular, when $n(1-q) / \log n$ tends to zero, the height of $T_{n, q}$ is asymptotically of order $c^{*} \log n$, like it is for random binary search trees. Finally, when $n(1-q) / \log n$ tends to infinity, we prove stronger tail bounds and distributional limits for the height of $T_{n, q}$.

