PIERRE-OLIVIER PARISÉ, Université Laval

On rank-one unitary perturbations of the shift operator over a de Branges-Rovnyak space

Due to a celebrating Theorem of Beurling and Lax, the closed subspaces K_{θ} , called the model spaces and parametrized by some function θ , of the Hardy space H^2 characterize the closed invariant subspaces of the backward shift operator S^* on the Hardy space H^2 . This means that any closed subspace V of H^2 such that $S^*V \subset V$ must be a model space K_{θ} , that is $V = K_{\theta}$.

In connection with this result, in 1972, Clark studied the invariant subspaces of the restricted shift $S_{\theta} := P_{K_{\theta}} S|_{K_{\theta}}$ defined on the model space K_{θ} where $P_{K_{\theta}}$ is the orthogonal projection on K_{θ} . One of his interests was to characterize the rank-one unitary perturbations of the restricted shift operator S_{θ} . He showed that such operators must be of the form U_{α} where $U_{\alpha}f = S_{\theta}f + \langle \alpha f, S^*\theta \rangle 1$ where $\langle \cdot, \cdot \rangle$ denotes the inner product in H^2 and $|\alpha| = 1$.

The goal of the talk is to generalize Clark's result to the de Branges-Rovnyak spaces in the case of extreme points b, a generalisation of the model space K_{θ} . More specifically, I will introduce the de Branges-Rovnyak spaces and show how the shift operator may be defined on this space. Then, I will show that Clark's result still hold in this framework.