XIAOHONG ZHANG, University of Waterloo Laplacian state transfer on weighted paths

Assume that X is a weighted graph with Laplacian matrix L(X). Let $U(t) = e^{itL(X)}$. Then U(t) is a complex symmetric unitary matrix. We say that X admits Laplacian perfect state transfer between vertices j and k at time $t = t_0$ if $|(U(t_0))_{j,k}|^2$, the fidelity of Laplacian state transfer between vertices j and k at time t_0 , is 1. It is known that the unweighted path on n vertices admits Laplacian PST only for n = 2. In this talk we will see that no weighted path on $n \ge 3$ vertices admits Laplacian perfect state transfer between its end vertices.