MARK KEMPTON, Brigham Young University Pretty Good Quantum Fractional Revival in Paths

Tools and techniques from algebraic graph theory have found important application in quantum information theory regarding the problem of transferring a quantum state through a network. A graph with adjacency matrix A is said to exhibit perfect state transfer from vertex u to v if |exp(itA)(u,v)| = 1 for some time t. A generalization of perfect state transfer called fractional revival occurs between a pair of nodes when any state initially (at t = 0) concentrated on those two nodes ends up concentrated on those two nodes at some time t > 0. Thus perfect state transfer is a special case of fractional revival. We will discuss when fractional revival happens approximately–so-called pretty good fractional revival. We will characterize when pretty good fractional revival can occur in a path graph.