GREG MARTIN, University of British Columbia-Vancouver
The universal invariant profile of the multiplicative group
The structure of the multiplicative group $M_{n}=(\mathbb{Z} / n \mathbb{Z})^{\times}$encodes a great deal of arithmetic information about the integer n (examples include $\phi(n)$, the Carmichael function $\lambda(n)$, and the number $\omega(n)$ of distinct prime factors of n). We examine the invariant factor structure of M_{n} for typical integers n, that is, the decomposition $M_{n} \cong \mathbb{Z} / d_{1} \mathbb{Z} \times \mathbb{Z} / d_{2} \mathbb{Z} \times \cdots \times \mathbb{Z} / d_{k} \mathbb{Z}$ where $d_{1}\left|d_{2}\right| \cdots \mid d_{k}$. We show that almost all integers have asymptotically the same invariant factors for all but the largest factors; for example, asymptotically $1 / 2$ of the invariant factors equal $\mathbb{Z} / 2 \mathbb{Z}$, asymptotically $1 / 4$ of them equal $\mathbb{Z} / 12 \mathbb{Z}$, asymptotically $1 / 12$ of them equal $\mathbb{Z} / 120 \mathbb{Z}$, and so on. Furthermore, for positive integers k, we establish a theorem of Erdős-Kac type for the number of invariant factors of M_{n} that equal $\mathbb{Z} / k \mathbb{Z}$, except that the distribution is not a normal distribution but rather a skew-normal or related distribution. This is joint work with Reginald M. Simpson.

