DIMITRIS KOUKOULOPOULOS, Université de Montréal

On the Duffin-Schaeffer conjecture

Let S be a set of natural numbers. We wish to understand how well we can approximate a "typical" real number using reduced fractions whose denominator lies in S. To this end, we associate to each $q \in S$ an acceptable error $\Delta_q > 0$. When is it true that almost all real numbers (in the Lebesgue sense) admit an infinite number of reduced rational approximations a/q, $q \in S$, within distance Δ_q ? In 1941, Duffin and Schaeffer proposed a simple criterion to decide whether this is case: they conjectured that the answer to the above question is affirmative precisely when the series $\sum_{q \in S} \phi(q) \Delta_q$ diverges, where $\phi(q)$ denotes Euler's totient function. Otherwise, the set of "approximable" real numbers has null measure. In this talk, I will present recent joint work with James Maynard that settles the conjecture of Duffin and Schaeffer.