## JAMIE JUUL, Amherst College

The arboreal Galois representation of a PCF cubic polynomial
Let $K$ be a field, $f(x)$ a polynomial of degree $d>1$ with coefficients in $K$, and $a \in K$. The roots of the polynomials $f^{n}(x)-a$, which are the pre-images of $a$ under $f^{n}(x)$, have a natural structure as a $d$-ary rooted tree. We can study the action of the absolute Galois group of $K$ on this tree structure. For a generic polynomial, this will give the full automorphism group of the tree. However in certain cases, such as when the polynomial is post-critically finite, this representation is known to have infinite index. In this talk, we will give a complete description of this group for the polynomial $f(x)=-2 x^{3}+3 x^{2}$ and base point $a=3$ over the rational numbers. This is joint work with Rob Benedetto, Xander Faber, Ben Hutz, and Yu Yasufuku.

