PETER DANZINGER, Ryerson University

Some recent results on the Hamilton-Waterloo Problem

Given a graph G, a C_n -factor is a spanning subgraph of G each component of which is isomorphic to the *n*-cycle C_n . A factorization of G is a set of factors that between them partition the edges of G. Let K_v^* be the complete graph on v vertices if v is odd and $K_v - I$, where I is a 1-factor, when v is even.

Given non-negative integers v, m, n, α, β , the Hamilton-Waterloo problem, HWP $(v; m, n; \alpha, \beta)$, asks for a factorization of K_v^* , or, into α C_m -factors and β C_n -factors. Clearly, $v, n, m \ge 3$ must be odd, $m \mid v, n \mid v$ and $\alpha + \beta = (v - 1)/2$ are necessary conditions. Without loss of generality we may assume that $n \ge m \ge 3$.

Recently we showed that the necessary conditions where (mostly) sufficient when m and n are odd and v is a multiple of n and m. More recently we have considered the case where v is not a multiple of n and m, we also have new results in the case where m and n have opposite parity.

Joint Work with A. Burgess and T. Traetta.