YINGFEI YI, University of Alberta

Reducibility of Quasi-Periodic Linear KdV Equation
We consider the following one-dimensional, quasi-periodically forced, linear KdV equations

$$
u_{t}+\left(1+a_{1}(\omega t, x)\right) u_{x x x}+a_{2}(\omega t, x) u_{x x}+a_{3}(\omega t, x) u_{x}+a_{4}(\omega t, x) u=0
$$

under the periodic boundary condition $u(t, x+2 \pi)=u(t, x)$, where ω 's are frequency vectors lying in a bounded closed region $\Pi_{*} \subset R^{b}$ for some $b>1, a_{i}: T^{b} \times T \rightarrow R, i=1, \cdots, 4$, are bounded above by a small parameter $\epsilon_{*}>0$ under a suitable norm, real analytic in $\phi \in T^{b}$ and sufficiently smooth in $x \in T$, and a_{1}, a_{3} are even, a_{2}, a_{4} are odd. Under the real analyticity assumption of the coefficients, we show that there exists a Cantor set $\Pi_{\epsilon_{*}} \subset \Pi_{*}$ with $\left|\Pi_{*} \backslash \Pi_{\epsilon_{*}}\right|=O\left(\epsilon_{*}^{\frac{1}{100}}\right)$ such that for each $\omega \in \Pi_{\epsilon_{*}}$, the corresponding equation is smoothly reducible to a constant-coefficients one. This problem is closely related to the existence and linear stability of quasi-periodic solutions in a nonlinear KdV equation.

