YOUNESS LAMZOURI, York University

Prime number races with many contestants
We investigate the logarithmic densities in prime number races with r competitors modulo q , when $r, q \rightarrow \infty$, assuming the standard conjectures GRH and LI. Among our results, we uncover an interesting transition in the asymptotic behavior of these densities when $r=(\log q)^{1+o(1)}$. First, in a joint work with A. Harper, we prove that these densities are all asymptotic to $1 / r$! when $r \leq(\log q)^{1-\epsilon}$, thus showing that all biases dissolve in this range. On the other hand, in a recent joint work with K. Ford and A. Harper, we show that when $r / \log q \rightarrow \infty$, there exist r-way prime number races where the densities are much smaller than $1 / r!$, and others where the densities are much larger than $1 / r!$, answering a question of A. Feuerverger and G. Martin. The proofs use various probabilistic tools, including a version of Stein's method of exchangeable pairs, and a quantitative multidimensional Gaussian approximation theorem, obtained through Lindeberg's method.

