YUVAL FILMUS, Technion - Israel Institute of Technology
Triangle-intersecting families of graphs
How many graphs can a collection of subgraphs of K_{n} consist of, if the intersection of any two contains a triangle? Simonovits and Sós asked this question in 1976, in the context of Erdös-Ko-Rado theory. They conjectured that such a collection can contain at most $1 / 8$ of the graphs. This bound is attained by a "triangle-junta", consisting of all supergraphs of a fixed triangle.
It is trivial to see that such a family contains at most $1 / 2$ of the graphs. Chung, Frankl, Graham, and Shearer improved this bound to $1 / 4$ in 1986, using Shearer's entropy lemma. This is where matters stood until Ellis, Friedgut, and myself proved the optimal upper bound $1 / 8$ in 2010.
Our proof uses a spectral technique known variously as Hoffman's bound, the Lovász theta function, and Friedgut's method. The technique involves cooking up a matrix whose rows and columns are indexed by subgraphs of K_{n}, entries corresponding to non-triangle-intersecting pairs of subgraphs are 0 , the maximal eigenvalue is 1 , and the minimal eigenvalue is $-1 / 7$.
Our main tool is the cut distribution of a graph, which is the distribution of the number of edges cut by a random partition of the vertex set. We find a linear combination of cut probabilities whose value always ranges between 1 and $-1 / 7$, and use it to construct the matrix mentioned above.

