EVELYN SANDER, George Mason University Chaos and quasiperiodicity

Periodicity, quasiperiodicity, and chaos are the types of typically observed in general dynamical systems. The Birkhoff Ergodic Theorem asserts that the Birkhoff time average, $\sum_{n=0}^{N-1} f(x_n)/N$ of a function f along a length N ergodic trajectory (x_n) of a function T converges to the space average $\int f d\mu$, where μ is the unique invariant probability measure for T. This relationship between the time and space averages is powerful, since often a time series is the only information available. However, the convergence of the Birkhoff average is slow, with an error of order N^{-1} for a length N trajectory. We present a modified Birkhoff average technique by giving very small weights to the terms to $f(x_n)$ when n is near 0 or N-1. Our method is to calculate $\sum_{n=0}^{N-1} w(n/N) f(x_n)$, where the weighting function w vanishes smoothly at the ends 0 and 1. This method is a significant improvement: when (x_n) is a trajectory on a quasiperiodic torus and f and T are infinitely-many times differentiable, our method of weighted Birkhoff average converges exponentially fast to $\int f d\mu$ with respect to the number of iterates N, *i.e.* with error decaying faster than N^{-m} for every integer m. As a result of this speed, we are able to obtain high precision values for $\int f d\mu$ with relatively low computational cost. Our weighted Birkhoff average is a powerful computational tool for computing rotation numbers and conjugacies. This is joint work with Suddhasattwa Das, Yoshitaka Saiki and James Yorke.