ZINOVY REICHSTEIN, University of British Columbia

The Hermite-Joubert Problem over p-fields
An 1861 theorem of Ch . Hermite asserts that for every field extension E / F of degree 5 there exists an element $a \in E$ such that $F(a)=E$ and the minimal polynomial of a over F is of the form

$$
f(x)=x^{5}+b_{2} x^{3}+b_{4} x+b_{5}
$$

An easy application of Newton's formulas shows that this is equivalent to $\operatorname{tr}_{E / F}(a)=\operatorname{tr}_{E / F}\left(a^{3}\right)=0$. A similar result for etale algebras of degree 6 was proved by P. Joubert in 1867. In this talk, based on joint work with Matthew Brassil, we will discuss the following (still largely open) question: Can these classical theorems be extended to field extensions of degree $n \geqslant 7$?

