KARL DILCHER, Dalhousie University

Generalized Fermat numbers and congruences for Gauss factorials

We define a Gauss factorial N_{n} ! to be the product of all positive integers up to N that are relatively prime to $n \in \mathbb{N}$. We consider the Gauss factorials $\left\lfloor\frac{n-1}{M}\right\rfloor_{n}$! for $M=3$ and 6 , where the case of n having exactly one prime factor of the form $p \equiv 1$ $(\bmod 6)$ is of particular interest. A fundamental role is played by primes with the property that the order of $\frac{p-1}{3}!$ modulo p is a power of 2 or 3 times a power of 2 ; we call them Jacobi primes. Our main results are characterizations of those $n \equiv \pm 1$ $(\bmod M)$ of the above form that satisfy $\left\lfloor\frac{n-1}{M}\right\rfloor_{n}!\equiv 1(\bmod n), M=3$ or 6 , in terms of Jacobi primes and certain prime factors of generalized Fermat numbers. (Joint work with John Cosgrave).

