ASKOLD KHOVANSKII, University of Toronto

Newton polyhedra and irreducible components of complete intersection
Consider a variety X defined in $\left(\mathbb{C}^{*}\right)^{n}$ by a generic system of equations with given Newton polyhedra. It is known that many "natural" discrete invariants of X can be explicitly computed in terms of Newton polyhedra. I will talk about the number $b_{0}(X)$ of irreducible components of X. There are two classical results about $b_{0}(X)$. First, if $\operatorname{dim} X=0$ then by BernsteinKouchnirenko theorem $b_{0}(X)$ is equal to the mixed volume of Newton polyhedra multiplied by n !. Second, if $\operatorname{dim} X>0$ and all Newton polyhedra have the biggest possible dimension n then $b_{0}(X)=1$. I will explain how to compute $b_{0}(X)$ in general case. One extra result. It turns out that each component of X can be defined by a generic system of equations whose Newton polyhedra can be constructed explicitly. So a natural discrete invariant of each component can be computed explicitly (such invariant takes the same value at all components of X).

