MATT WIERSMA, University of Waterloo

C*-norms for tensor products of discrete group C*-algebras

A C^* -algebra \mathcal{A} is said to be nuclear if the algebraic tensor product $\mathcal{A} \otimes \mathcal{B}$ admits a unique C^* -norm for every C^* -algebra \mathcal{B} . Lance showed in 1973 that a discrete group Γ is amenable if and only if $C_r^*(\Gamma)$ is nuclear. We are able to show that if Γ is nonamenable, then $C_r^*(\Gamma) \otimes C_r^*(\Gamma)$ and $C^*(\Gamma) \otimes C_r^*(\Gamma)$ admit nonunique C^* -norms. Further, when Γ_1 and Γ_2 contain copies of noncommutative free groups, then $C_r^*(\Gamma_1) \otimes C_r^*(\Gamma_2)$ and $C^*(\Gamma_1) \otimes C_r^*(\Gamma_2)$ admit 2^{\aleph_0} distinct C^* -norms.